

Solar-powered tiash cans

Current operationsy

- 315 trash receptacles in city parks
- Emptied when at least one-thircd full
- All cans are checked daily
- Labor costs for collections $\$ 205,000$ in FY08/09
- 13 field staff expend 5,300 houlis
- Fully burdened hourly rate

Solar-powered tiash cans
 Traditional tras fis cast

- Service per week on average: $5 x$
- Labor cost per service:
- Total cost/week:
- Cost of 80 cans
$\$ 2.91$ $\$ 14.50$
$\$ 1,160 /$ week

Solar-powered itsin denns
 Plan for solar-powered cans

- Use 20 to replace 80 traditional cans in City parks
- Research shows visitors seek out compactors to dispose of trash
- No overflowing cans

Solar-powered crash celas

Solar-powered compacting cans;

- Service per week on average: " 1 time
- Labor cost per service: $\$ 2.91$
- Total cost per service per week; \$2.91
- 20 cans' costs
\$58/week
- Cost savings vs, 80 cans:
$\$ 1,102 / \mathrm{wk}$

Estimated labor sayingst

- 80 trash cans $x \$ 14.50=\$ 1,160$ Replaced by:
- 20 trash cans $x \$ 2.91=\$ 58$ Weekly savings:
$\$ 1,102$
$\$ 1,102 \times 52$ Weeks $=\$ 57,304$

Solar-powered trash cans
 Other savings

- Minimum savings of 400 gallons of fuel each year.

Note: 25-percent fewer collection trips actually saves approximately 800 gallons, buit figure halved for attainable fuel savings target for the purpose off the grant.

Solar-powered trash cans

- Actual fuel savings could exceed 1,000 gallons/year
- Base estimated annual fuel savings: $\$ 1,200$

Solar-powered iscsincas
 Summary
 - Labor cost savings:
 - Fuel savings:
 Total savings
 $\$ 57,304$ $\$ 1,200$ $\$ 58,504$

 $\$ 57,304$

 $\$ 57,304$ $\$ 1,200$ $\$ 1,200$ $\$ 58,504$

 $\$ 58,504$}Capital cost recovery =1 year Actual capital outlay $=\$ 0$

Solar-powered trash cans

