

City of Palm Springs Greenhouse Gas Inventory

City of Palm Springs - October 26, 2010

340 S. Farrell Drive, Suite A210 Palm Springs, California 92262

ADMINISTRATIVE DRAFT Greenhouse Gas Inventory City of Palm Springs, California

City of Palm Springs 3200 East Tahquitz Canyon Way Palm Springs, CA 92262 760-323-8299

Contact: Michele Catherine Mician, MS Manager, Office of Sustainability

Prepared by:

Michael Brandman Associates 340 S. Farrell Drive, Suite A210 Palm Springs, CA 92262

Contact: Frank Coyle, REA Author: Cori Wilson Project Number: 02270004

October 26, 2010

TABLE OF CONTENTS

Section 1: Executive Summary	.1
Section 2: Introduction 2.1 - Purpose of the Inventory 2.2 - About the Inventory 2.3 - City of Palm Springs 2.4 - Climate Change Background Climate Change Greenhouse Gases	3 4 5 9
California Regulatory Context	17 17 17 19 20
Section 4: Community Inventory	25 25 28
Section 6: References	37 37 39 40

Appendix A: Spreadsheets and Model Output

Appendix B: Southern California Edison Reports

Appendix C: Southern California Association of Governments Letter

LIST OF TABLES

Table 1: Summary of Greenhouse Gas Emissions	1
Table 2: City of Palm Springs Profile	6
Table 3: Global Warming Potentials	. 12
Table 4: Scoping Plan Reductions in California	. 15
Table 5: Scoping Plan Percent Reductions in California	. 16
Table 6: Government Historical Inventory and Future Business as Usual Inventory	. 20
Table 7: Government Compliance Inventory	. 23
Table 8: Community Historical and Future Business as Usual Inventory	. 31
Table 9: Community Future Year Compliance Inventory	. 33

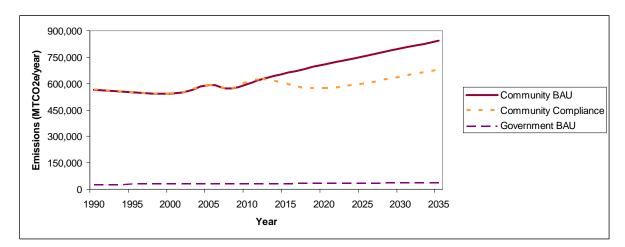
LIST OF FIGURES

Figure 1: Inventory Growth	1
Figure 2: City of Palm Springs Population and Housing Trends	9
Figure 3: The Greenhouse Effect	11
Figure 4: Global Atmospheric Concentration of CO ₂	12
Figure 5: United States Greenhouse Gas Emissions Trends	13
Figure 6: California Greenhouse Gas Emissions in 2008	13
Figure 7: Government Historical and Future Year Business as Usual Inventory	21
Figure 8: Comparison of Municipal Parks Electricity Use	22
Figure 9: Government Inventory Growth	22
Figure 10: Community Historical and Future Business as Usual Inventory	28
Figure 11: 2035 Community Business as Usual Emissions	32
Figure 12: Community Inventory Growth	32

LIST OF EXHIBITS

Exhibit 1: Regional Location Map	7
Exhibit 2: Community Business as Usual Emissions	29

SECTION 1: EXECUTIVE SUMMARY


The City of Palm Springs (City) has prepared a greenhouse gas (GHG) emission inventory as an initial step in meeting its Path to Sustainable Communities objectives. GHGs were estimated for community and government sources. Community emissions refer to emissions within the City from sources such as motor vehicles traveling on roads within the City, emissions from power plants to generate the electricity used within the City, and emissions from the combustion of natural gas used within the City. Government emissions refer to emissions within the City government's control, such as methane from the wastewater treatment plant, natural gas from the City's co-generation plants, and from City vehicle fuel combustion. The government emissions are included in the community emissions. Table 1 and Figure 1 display a summary of the GHG emissions.

				Emissior	ns (MTCO₂e	per year)		
Туре	Category	1990	2000	2005	2008	2012	2020	2035
Community	BAU	565,814	540,400	591,892	572,497	626,405	707,197	843,231
	Compliance	—		_	_	_	573,760	678,863
Government	BAU	26,812	29,900	30,592	31,227	31,739	33,235	36,096
	Compliance	_	_	_	_	_	31,920	34,664

Table 1: Summary of Greenhouse Gas Emissions

Notes:

BAU = business as usual; MTCO₂e = metric tons of carbon dioxide equivalents (greenhouse gas emissions) Note that only compliance scenarios for 2020 and 2035 are provided. Source: Michael Brandman Associates (Appendix A).

Figure 1: Inventory Growth

SECTION 2: INTRODUCTION

2.1 - Purpose of the Inventory

This inventory serves the following purposes:

- It identifies sectors that would provide the greatest opportunity for reductions.
- In the future, the City may prepare a Climate Action Plan; the greenhouse gas (GHG) inventory would be part of that Climate Action Plan. Climate Action Plans typically contain reduction targets and describe how strategies

Palm Trees in the City of Palm Springs

and policies within the Climate Action Plan will meet the reduction target.

 This inventory fulfills Objective 1.1 in the Palm Springs Path to a Sustainable Community, a document prepared by the City in 2009. A summary of the vision of the document as well as the three climate change objectives is presented below.

The Palm Springs Path to a Sustainable Community March 25, 2009

Vision

Palm Springs is a thriving community that maximizes its renewable resources and conserves and restores its limited resources, so that residents can be assured of a future that is economically viable and in balance with the local environment.

Palm Springs aspires to be a place where:

- Citizens are engaged and share a vision of a sustainable future.
- Businesses support clean technology, the production of renewable energy and the internationally renowned eco-destination thrives.
- Children learn that sustainability is the local culture early, and this learning continues throughout life.
- Water and materials are recycled and reused.
- Homes, businesses and neighborhoods are built to high green building standards.
- Local businesses are supported and new ideas flourish.

Climate Change

Goal: Palm Springs is carbon neutral.

Objective 1: Establish a baseline inventory and forecast, ongoing tracking and reporting mechanism for GHG emissions.

- 1. Develop a comprehensive GHG emissions inventory for City government and the City of Palm Springs geographic area in partnership with other area governments.
- 2. Annually inventory and report GHG emissions so that reductions can be tracked in a transparent, consistent and accurate manner.

Objective 2: Develop strategies to reduce contributions to GHG emissions to 1990 levels by 2020 and carbon neutrality by 2030.

- 1. Develop a local climate change action plan to reduce GHGs for Palm Springs.
- 2. Retrofit and install Light-Emitting Diode (LED) energy efficient lighting in all of the City's traffic lights.
- 3. Improve city-wide traffic signalization, including permission left turn lanes.
- 4. Lead a valley-wide effort to improve traffic signalization and incorporate permission left turn lanes throughout the Coachella Valley.
- 5. Review current zoning and building codes to minimize the impact of GHG.
- 6. Participate in the development and implementation of regional strategies to meet the requirements of AB 32.
- 7. Establish incentives and disincentives to reduce production of GHGs by sectors in the City (such as energy production, transportation and real estate residential, commercial, and industrial).
- Participate in a regional carbon offset program, carbon trading or "cap and trade" system to capture funding for local/regional actions to reduce contributions to GHGs.

Objective 3: Pursue energy efficient transportation options that reduce GHG emissions.

- 1. Reduce employee vehicle miles traveled in city vehicles by promoting teleconferences and the availability of alternative transportation options for business and trips.
- 2. Encourage telecommuting and flexible hours policies to avoid at least one commuting day per month per employee (average).
- 3. Work with the building industry to reduce vehicle trips to and from construction sites.

2.2 - About the Inventory

The City of Palm Springs GHG inventory contains GHG emissions from the municipal government and the community. Emissions are reported as a quantity over time, such as in tons per year. This inventory does not report concentrations of pollutants in the air, which is a measure of the total amount of a pollutant, typically measured in parts per million, parts per billion, or micrograms per cubic meter (μ g/m³) of air.

This inventory only estimates GHGs and does not contain an estimate of criteria air pollutants (ozone, particulate matter, carbon monoxide, nitrogen dioxide, sulfur dioxide, and lead), nor does it contain an inventory of toxic air pollutants (diesel particulate matter, benzene, etc.).

The inventory incorporates two entities: the community and the municipal government. The community emissions refer to emissions *within* the City, such as emissions from motor vehicle use and from generating electricity to power buildings within the City. The municipal government inventory consists of emissions within the control of the government, such as electricity to power City Hall and City fleet vehicle emissions.

The inventory estimates emissions for the years 1990, 2000, 2005, and 2008. The year 1990 was selected to be consistent with Climate Change Objective 2 in the Palm Springs Path to a Sustainable Community. The year 2000 was selected because data was available. The year 2005 was selected because it was prior to the adoption of Assembly Bill (AB) 32;

thus, reductions from regulations pertaining to AB 32 are not shown. Year 2008 was selected because it is the most recent year for which data is available.

Emissions for 2012, 2020, and 2035 were projected for two scenarios: compliance and business as usual. The compliance scenario incorporates planned regulations that will go into effect by 2012 and 2020, such as the Pavley regulations, which will reduce emissions from new motor vehicles. Business as usual refers to the emissions that do not take into account regulations or any measures of which the City is planning to reduce emissions.

GHG inventories consider a wide range of human activities. Estimating the amount of GHGs generated by these activities requires using a multiplicity of data

Palm Springs and the San Jacinto Mountains

sources and a diverse set of methodologies. Emission inventories are by nature the reflection of the best available data and the most applicable methods at the time of their compilation. As data grows and understanding develops, the inventories can be updated and improved. Emissions calculated for this inventory reflect current best estimates; in some cases, however, estimates are based on assumptions and incomplete data. Therefore, this inventory contains uncertainties.

Emissions inventories are organized by source categories or sectors. The State of California organizes its emission inventory by the following sectors:

- Agriculture
- Commercial and residential
- High global warming potential gases
- Recycling and waste

Electricity

Transportation

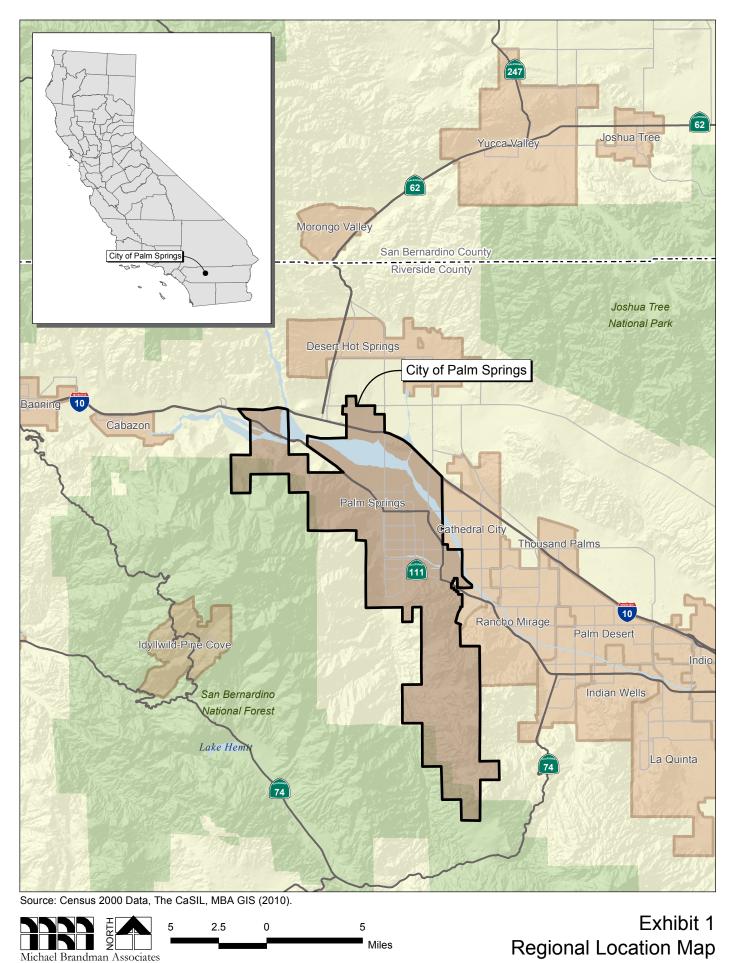
Industry

This inventory provides emission estimates for all of the sectors except for agriculture and industry. Palm Springs has limited agriculture and industrial sources, and the emissions from energy use (electricity and natural gas) from industrial sources are included in the commercial sector.

2.3 - City of Palm Springs

The City lies within the Coachella Valley desert region at the base of the San Jacinto and Santa Rosa Mountains, approximately 60 miles east of Riverside. The expansive desert terrain contributes to the City's warm climate; the mountains provide a dramatic visual

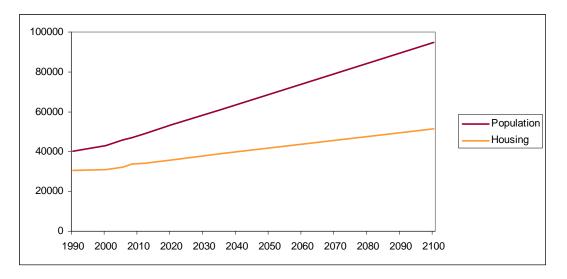
backdrop and shelter from the winds. Its proximity to metropolitan Los Angeles, Orange, and San Diego counties, combined with the City's superior physical setting, is a primary reason that Palm Springs has become a popular resort destination.


The City's incorporated area encompasses 60,440 acres, or 95 square miles; the City's sphere of influence comprises another 27,160 acres, or 42 square miles. Primary access to the City is provided by Interstate 10 and Highway 111; north–south access to the City is provided via Indian Canyon Drive and Gene Autry Trail (Exhibit 1).

As recommended in the Local Government Operations Protocol, Table 2 presents a profile summary for the City of Palm Springs.

Item	Data			
Jurisdiction name	City of Palm Springs			
Street address (for City Hall)	3200 East Tahquitz Canyon Way			
City, State, Zip	Palm Springs, California 92262			
County	Riverside			
Website	http://ci.palm-springs.ca.us/			
Size	95 square miles			
Population ¹	2009: 47,601			
Annual budget ²	Total 2010-2011: \$146,473,415			
Employees (full time equivalent)	2010: 390			
Climate zone ³	15			
Annual heating degree days ⁴	Base 65: 1000; Base 60: 475			
Annual cooling degree days ⁴	Base 55: 6715; Base 60: 5196			
Contact person Phone Email	Michele Catherine Mician, MS 760-323-8214 Michele.Mician@palmsprings-ca.gov			
Services provided	Water treatment and distribution, wastewater treatment and collection, fire protection, police, solid waste collection, airport, street lighting and traffic signals, Angel Stadium, convention center			
Sources: ¹ Department of Finance, 2009. ² Palm Springs Resolution No. 22714 ³ California Energy Commission, 201 ⁴ Western Regional Climate Center, 2	0.			

Table 2: City of Palm Springs Profile


⁴ Western Regional Climate Center, 2006.

02270004 • 08/2010 | 1_regional.mxd

CITY OF PALM SPRINGS GREENHOUSE GAS INVENTORY

Population and housing trends for the City for the years that this inventory covers are displayed in Figure 2. Year 2035 population and housing estimates are interpolated from buildout of the General Plan. It is assumed for purposes of this analysis that buildout of the General Plan would occur in 2100. This assumption is based on a letter from the Southern California Association of Governments (contained in Appendix C), which contains population projections that were used in Senate Bill (SB) 375. In order to be close to those projections, a General Plan buildout year of 2100 is required.

2.4 - Climate Change Background

Climate Change

Climate change is a change in the average weather of the earth that is measured by alterations in wind patterns, storms, precipitation, and temperature. These changes are assessed using historical records of temperature changes occurring in the past, such as during previous ice ages. Many of the concerns regarding climate change use this data to extrapolate a level of statistical significance specifically focusing on temperature records from the last 150 years (the Industrial Age) that differ from previous climate changes in rate and magnitude.

The United Nations Intergovernmental Panel on Climate Change constructed several emission trajectories of GHGs needed to stabilize global temperatures and climate change impacts. The Intergovernmental Panel on Climate Change predicted that global mean temperature change from 1990 to 2100, given six scenarios, could range from 1.1 degrees Celsius (°C) to 6.4°C. Regardless of analytical methodology, global average temperatures and sea levels are expected to rise under all scenarios (Intergovernmental Panel on Climate Change 2007a).

Climate Change Consequences

In California, climate change may result in consequences such as the following:

- A reduction in the quality and supply of water to the State from the Sierra snowpack. If heat-trapping emissions continue unabated, more precipitation will fall as rain instead of snow, and the snow that does fall will melt earlier, reducing the Sierra Nevada spring snowpack by as much as 70 to 90 percent. This can lead to challenges in securing adequate water supplies. It can also lead to a potential reduction in hydropower.
- Increased risk of large wildfires. If rain increases as temperatures rise, wildfires in the grasslands and chaparral ecosystems of southern California are estimated to increase by approximately 30 percent toward the end of the 21st century because more winter rain will stimulate the growth of more plant "fuel" available to burn in the fall. In contrast, a hotter, drier climate could promote up to 90 percent more northern California fires by the end of the century by drying out and increasing the flammability of forest vegetation.

Wildfire in California

- Reductions in the guality and guantity of certain agricultural products. The crops and products likely to be adversely affected include wine grapes, fruit, nuts, and milk.
- Exacerbation of air quality problems. If temperatures rise to the medium warming range, there could be 75 to 85 percent more days with weather conducive to ozone formation in Los Angeles and the San Joaquin Valley, relative to today's conditions. This is more than twice the increase expected if rising temperatures remain in the lower warming range.
- A rise in sea levels resulting in the displacement of coastal businesses and residences. During the past century, sea levels along California's coast have risen about seven inches. If heat-trapping emissions continue unabated and temperatures rise into the higher anticipated warming range, sea level is expected to rise an additional 22 to 35 inches by the end of the century. Elevations of this magnitude would inundate coastal areas with salt water, accelerate coastal erosion, threaten vital levees and inland water systems, and disrupt wetlands and natural habitats.
- Damage to marine ecosystems and the natural environment.

- An increase in infections, disease, asthma, and other health-related problems.
- A decrease in the health and productivity of California's forests.¹

Greenhouse Gases

Gases that trap heat in the atmosphere are referred to as GHGs. The effect is analogous to the way a greenhouse retains heat. As shown in Figure 3, the energy influx is maintained by three main factors: the amount of energy coming in, which depends on the earth's distance from the sun and solar activity; the albedo (the ability of the earth's surface to reflect light); and the chemical composition of the atmosphere. The presence of GHGs in the atmosphere regulates the earth's temperature. Without the natural heat trapping effect of GHGs, the earth's surface would be about 34°C cooler.

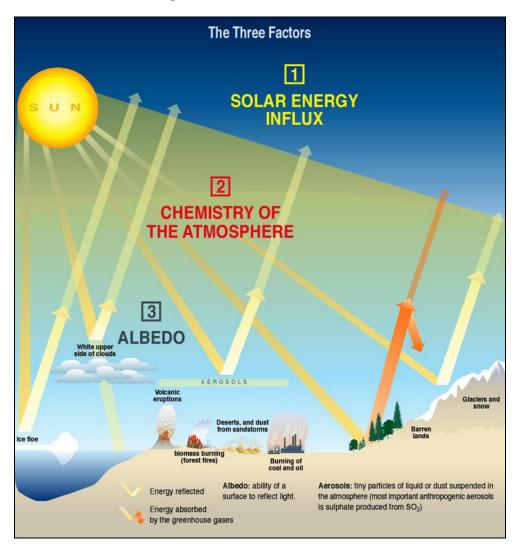
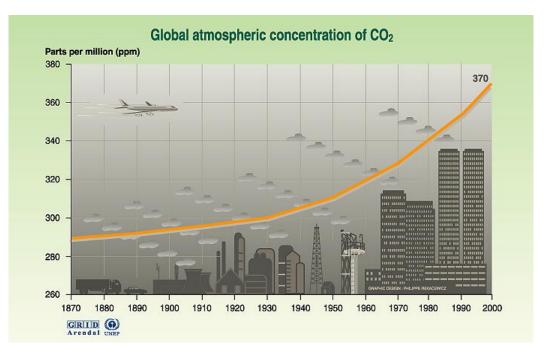
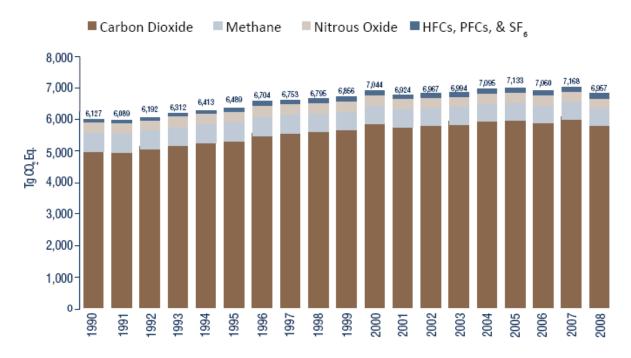



Figure 3: The Greenhouse Effect

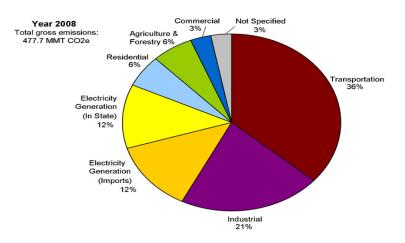
California Climate Change Center, 2006; Moser et al. 2009.

The chemical composition of the atmosphere changes over time. Natural processes and human activities emit GHGs. As shown in Figure 4, carbon dioxide concentrations in the atmosphere have steadily increased over time. The global atmospheric concentration of carbon dioxide (CO_2) data in Figure 4 prior to 1958 are from ice core measurements, and post-1958 data are from the Mauna Loa measurement site in Hawaii.


Figure 4: Global Atmospheric Concentration of CO₂

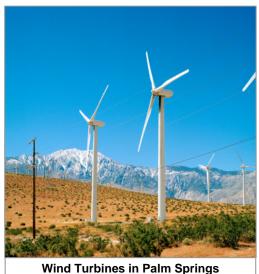
GHGs have varying global warming potential and atmospheric lifetimes. Carbon dioxide, the reference gas for global warming potential, has a global warming potential of 1. The calculation of the carbon dioxide equivalent (CO₂e) is a consistent methodology for comparing GHG emissions, since it normalizes various GHG emissions to a consistent metric. Methane's warming potential of 21 indicates that methane has a 21 times greater warming affect than carbon dioxide on a molecule per molecule basis. A carbon dioxide equivalent is the mass emissions of an individual GHG multiplied by its global warming potential. Emissions are typically shown in metric tons of carbon dioxide equivalents (MTCO₂e) or a million times that, million metric tons of carbon dioxide equivalents 3.

Greenhouse Gas	Global Warming Potential				
Carbon dioxide (CO ₂)	1				
Methane (CH ₄)	21				
Nitrous oxide (N ₂ O)	310				
Source: Intergovernmental Panel on Climate Change 2007a.					


Table 3: Global Warming Potentials

Emissions worldwide were approximately 49,000 MMTCO₂e in 2004 (Intergovernmental Panel on Climate Change, 2007b). As shown in Figure 5, emissions in the United States in 2008 were approximately 6,957 MMTCO₂e (1 teragram (Tg) is equal to 1 MMT). Carbon dioxide is the main contributor to GHG emissions in the United States (water vapor is also a contributor but is not regulated). As shown in Figure 6, GHG emissions in California in 2008 were approximately 477.7 MMTCO₂e, which is 6.8 percent of the United States inventory.

Figure 5: United States Greenhouse Gas Emissions Trends


Figure 6: California Greenhouse Gas Emissions in 2008

California Regulatory Context

California has adopted a variety of regulations aimed at reducing the State's GHG emissions. While state actions alone cannot stop climate change, the adoption and implementation of this legislation demonstrates California's leadership in addressing this challenge. Key legislation pertaining to the State's reduction targets are described below.

Executive Order S-3-05. California Governor Arnold Schwarzenegger announced on June 1, 2005, through Executive Order S 3-05, the following reduction targets for GHG emissions:

- By 2010, reduce GHG emissions to 2000 levels;
- By 2020, reduce GHG emissions to 1990 levels; and
- By 2050, reduce GHG emissions to 80 percent below 1990 levels.

Executive Order S-13-08 directs the Governor's Office of Planning and Research, in cooperation with the California Resources Agency, to provide land use planning guidance related to sea level rise and other climate change impacts. The order also directs the California Resources Agency to develop a State Climate Adaptation Strategy and to convene an independent panel to complete the first California Sea Level Rise Assessment Report.

Senate Bill (SB) 375. SB 375 aligns regional transportation planning efforts, regional GHG reduction targets, and affordable housing allocations. Metropolitan Planning Organizations are required to adopt a Sustainable Communities Strategy, which allocates land uses in the Metropolitan Planning Organization's Regional Transportation Plan. Qualified projects consistent with an approved Sustainable Communities Strategy or Alternative Planning Strategy and categorized as "transit priority projects" would receive incentives under new provisions of CEQA.

AB 32. The California State Legislature enacted AB 32, the California Global Warming Solutions Act of 2006. AB 32 requires that GHGs emitted in California be reduced to 1990 levels by the year 2020. GHGs as defined under AB 32 include carbon dioxide, methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. The California Air Resources Board (ARB) is the state agency charged with monitoring and regulating sources of GHGs.

The ARB approved the Climate Change Scoping Plan in December 2008 (California Air Resources Board, 2008). The Scoping Plan contains measures designed to reduce the State's emissions to 1990 levels by the year 2020. Local governments must achieve reductions through land use measures that will be substantially dependent on the General Plan for success. Statewide, the ARB expects to target local governments with reducing GHG emissions by 5 MMTCO₂e by 2020.

Scoping Plan Reductions

The Scoping Plan contains a variety of measures, some of which would not directly reduce emissions in Palm Springs. The measures that could reduce emissions in Palm Springs are presented in Table 4.

Category	Scoping Plan Measure	Reductions in 2020 (MMTCO ₂ e)
On-road motor vehicles:	Pavley (AB 1493)	27.7
passenger vehicles	Tire Pressure Program	0.74
	Low Carbon Fuel Standard	16
	Advanced Clean Cars	5.1
	Tire Tread Program	0.3
	Subtotal	49.84
On-road motor vehicles: heavy duty trucks	Heavy-duty vehicle (Aerodynamic efficiency)	0.93
Ozone-depleting substance substitutes	Limit High GWP Use in Consumer Products	0.23
	High-GWP Refrigerant Management Program for Stationary Sources	8
	Alternative Suppressants in Fire Protection Systems	0.1
	Mitigation Fee on High GWP Gases	5
	Stationary Equipment Refrigerant Management Program – Specifications for Commercial and Industrial Refrigeration	4
	Subtotal	17.33
Waste	Landfill Methane Control Measure	1.5
Electricity	Renewable Electricity Standard	13.4
	Renewables Portfolio Standards	7.9
	Subtotal	21.3

Table 4: Scoping Plan Reductions in California

 $MMTCO_2e = million metric tons of carbon dioxide equivalents; GWP = global warming potential Source: California Air Resources Board, 2010.$

The percent reductions from the measures shown in Table 4 are shown in Table 5. The reductions apply to the California inventory, but similar rates of reduction are expected to occur in Palm Springs. The business as usual emissions for the State's forecast of 2020 emissions is forecast from 3-year average emissions for 2002–2004. The project's business as usual forecast was based on emission factors and values for 2005 and 2008; therefore, reductions are applicable to project emissions.

In 2006 and 2008, Southern California Edison delivered approximately 16 percent of power generated by renewable energy (Southern California Edison, 2006 and 2010). The Renewables Portfolio Standards and the Renewable Electricity Standard require a 33-percent renewable energy mix as an average statewide. If Southern California Edison were to increase its renewable energy mix to 33 percent by 2020, it would need to increase it by 17 percent. Therefore, a 15-percent reduction from electricity is a reasonable assumption.

The percent reductions shown in Table 5 are applied to the business as usual emissions to result in the "compliance" emission scenario. Some measures will be implemented before 2020; however, no reductions from these measures are taken for 2012 emissions because emission reduction data is not available.

Category	Emissions in 2020 (MMTCO2e)	Reductions in 2020 (MMTCO₂e)	Percent Reduction (%)				
On-road motor vehicles: passenger vehicles	160.8	49.84	31				
On-road motor vehicles: heavy duty trucks	48.3	0.93	2				
Ozone-depleting substance substitutes	45.0	17.33	39				
Waste	7.7	1.5	19				
Electricity (California average)	139.2	21.3	15				
Notes: MMTCO ₂ e = million metric tons of carbon dioxide equivalents; NA = not available Sources: Emissions in 2020: California Air Resources Board, 2008. Reductions in 2020: Table 4							

Table 5: Scoping Plan Percent Reductions in California

SECTION 3: GOVERNMENT INVENTORY

3.1 - Methodology

The methodology for the government inventory follows the Local Government Operations Protocol (Protocol) (California Air Resources Board, et al. 2010). The emissions are reported are those within operational control of the City. The City has operational control over an operation if the City has the full authority to introduce and implement its operating policies at the source. Operating policies can include operational, health, safety, and environmental policies.

The Protocol divides GHG emissions into scopes. This inventory will include the following emission categories:

- Scope 1: All direct GHG emissions
- Scope 2: Indirect GHG emissions associated with the consumption of purchased or acquired electricity, steam, heating, or cooling
- Scope 3: Although these emissions are optional, emissions associated with employee commute and business travel are reported.

Estimates of emissions for the "forecast" years, or years 2012, 2020, and 2035 were based on various criteria such as population growth and other factors described below.

Scope 1 Emissions

Palm Springs International Airport

The Palm Springs International Airport is under the City's jurisdiction. The airport was recently renovated in 2009, which added 5,000 square feet for a concessions area, restrooms, and terminal building, including a remodeled courtyard area (Palm Springs 2009).

Although emissions are produced by the aircraft that land and take off at the airport, only emissions from the ground equipment fuel use are estimated.

Palm Springs International Airport equipment

Fuel usage for 2005 and 2008 were provided by the airport. Fuel usage at the airport for the forecast years was estimated based on gallons per total takeoff and landings in 2008. Fuel usage estimates for 1990 and 2000 were based on gallons per passenger in 2005.

Palm Springs Wastewater Treatment Plant

The Palm Springs Wastewater Treatment Plant was originally constructed in 1960 to treat 4.15 million gallons per day (mgd). Two facility expansions were completed in 1979 and 1983, bringing the total design capacity to 10.9 mgd for average annual flow. The treatment processes consist of preliminary screening, grit removal, primary clarification, trickling filters, and secondary clarification. Treated effluent is disposed of onsite in percolation ponds or is supplied to the Desert Water Agency for further treatment to meet reuse standards for offsite irrigation. Biosolids from the treatment process are thickened, then stabilized by anaerobic digestion and dried with sludge drying beds before final disposal (Palm Springs 2010a).

Emissions from the treatment plant include stationary methane emissions from incomplete combustion of digester gas, process methane emissions from wastewater treatment lagoons, and process emissions from the plant without nitrification/denitrification. Emissions for forecast years were estimated from population growth assumptions.

Former Palm Springs Landfill

The Former Palm Springs Landfill is an inactive landfill that had accepted predominantly household refuse and construction waste from the early 1930s until the mid-1960s. It is estimated that the volume of landfill debris is approximately 545,000 cubic yards, of which approximately 29 percent and 71 percent of the material are construction and household debris, respectively (Source Group 2003).

Former Palm Springs Landfill Remediation, 2004

In 2004, the Former Palm Springs Landfill was remediated, and the landfill material was moved, recompacted, and capped within a proposed central parking area. A monitoring program was installed to determine if methane or other gases are accumulating in the piping. If there is accumulation, low-flow vacuum pumps purge the gases. There is no gas recovery collection system of methane to generate electricity.

Methane emissions from the landfill (for past, current, and future emissions) are estimated using the ARB's Landfill Emissions Tool (California Air Resources Board 2010). There is some uncertainty in the emissions estimates, as the waste in cubic yards was converted to waste in tons.

Co-generation Plants

There are two co-generation plants located within the City and operated by the City: Municipal and Sunrise Plaza. The co-generation plants use natural gas to power engines to generate electricity and heat. When natural gas is burned, it emits GHGs. Natural gas usage was provided by the City and was entered into the Clean Air and Climate Protection (CACP) model to generate GHG emissions.

The heat byproduct from the co-generation plants is used to produce steam and hot water for the chillers as well as hydronic space heating. A chiller removes heat from a liquid. The liquid is then distributed to heat exchangers or coils, which cool the air in the space where they are located. The liquid is recirculated back to the chiller to be cooled again.

The Municipal co-generation plant provides electricity to the airport, county building, Fire Station #2, the city yard, City Hall, and the police station. Any additional electricity that is required is provided by Southern California Edison (and is shown in the Electricity category of the Government Inventory).

The City is currently conducting a comprehensive energy audit to develop a set of programs that will be combined as a performance-based, single-energy project with the intended purpose to save energy, reduce GHG emissions, and cut the City's energy and maintenance and capital equipment expenditures throughout all of the City's facilities, including the two co-generation plants. The future of the co-generation plants is unknown at this time. Therefore, it is assumed that natural gas use in future years is the same as in 2008.

City Vehicle Fleet

There are emissions from vehicles driven by City employees, such as police vehicles, firefighting vehicles and trucks, passenger vehicles, and trucks. Fuel use from municipal operations was entered into the CACP model. Fuel use per capita in 2008 was used to estimate fuel use for the forecast years using population growth as a surrogate, as it is anticipated that more City employees and services would be required in proportion to the increase in population.

Ozone-Depleting Substance Substitutes

The City of Palm Springs estimated that approximately 90 to 120 pounds of refrigerant (R-22) leaks out of the air conditioning systems used in City facilities, according to City records of replacement of refrigerant required from leakage. These emissions were converted to GHG emissions using the global warming potential for R-22. It is assumed that emissions in forecast years would be the same as current emissions. Even if the type of refrigerant changes in the future, the global warming potential would likely be about the same, as would the leakage.

Scope 2 Emissions

Natural Gas

Natural gas usage was not available through Southern California Gas Company. Therefore, natural gas usage is not included in the City's inventory (with the exception of natural gas used for the co-generation plants).

Electricity

The City purchases electricity from Southern California Edison for its electricity needs not supplied by the co-generation plants. The electricity usage was provided by Southern California Edison and was converted to GHG emissions using emission factors specific to Southern California Edison, published by eGRID. The emissions for 1990 use the emission factors from eGRID for 1996, the emissions for 2000 use emission factors for 2000, and emissions for later years use emission factors for 2005. Forecasts were estimated by assuming that electricity would increase proportionate to population growth in the City.

Scope 3 Emissions

Employee Commute

An employee survey was conducted between August 25, 2010 and October 5, 2010. From a total of 390 employees, 141 surveys, or 36 percent, were completed. The survey was used to obtain the type of vehicle used for employee commutes and the distance to the place of employment from the residence. The average commute was applied to estimate emissions from all the employees. No growth was assumed for the employee commute because, since 1990, the number of employees has declined and is not based on the population within the City.

3.2 - Results

The estimated GHG emissions from government operations are shown in Table 6 and in Figure 7. The fugitive gases (methane and nitrous oxide) from the wastewater treatment plant are the largest source of emissions for all years, followed by the co-generation plants.

	Emissions (MTCO ₂ e per year)						
Category	1990	2000	2005	2008	2012	2020	2035
Former Palm Springs Landfill ¹	1,811	1,482	1,341	1,263	1,145	917	632
Wastewater treatment plant (fugitive) ¹	13,236	14,028	14,847	15,282	15,957	17,308	19,841
Co-generation plants ¹	6,646	10,020	9,112	8,746	8,746	8,746	8,746
Airport fuel use ¹	53	79	86	109	115	133	162
City vehicle fleet ¹	1,687	1,495	1,450	1,559	1,628	1,767	2,026
Ozone-depleting substance substitutes ¹	99	99	99	99	99	99	99
Electricity – municipal ²	834	734	1,809	2,208	2,302	2,467	2,716
Electricity – streetlights ²	741	652	633	681	710	761	838

Table 6: Government Historical Inventory and Future Business as Usual Inventory

Table 6 (cont.): Government Historical Inventory and Future Business as Usual Inventory

	Emissions (MTCO₂e per year)						
Category	1990	2000	2005	2008	2012	2020	2035
Employee commute ³	1,705	1,312	1,216	1,280	1,036	1,036	1,036
Total	26,812	29,901	30,593	31,227	31,738	33,234	36,096
Total 26,812 29,901 30,593 31,227 31,738 33,234 36,096 Notes: 2012, 2020, and 2035 are projections based on business as usual. MTCO ₂ e = metric tons of carbon dioxide equivalents 1 Scope 1 emissions 2 Scope 2 emissions 3 Scope 3 emissions Source: Appendix A.							

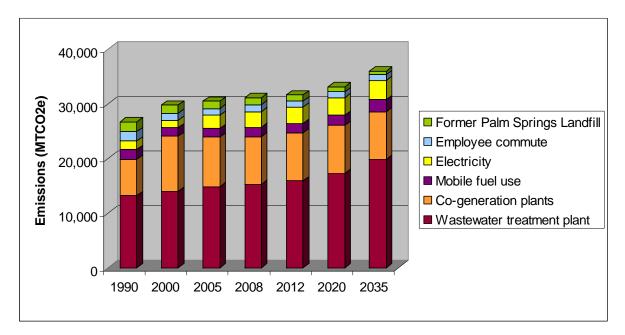


Figure 7: Government Historical and Future Year Business as Usual Inventory

A comparison of the Scope 2 emissions from electricity generation for City parks and associated buildings is shown in Figure 8.

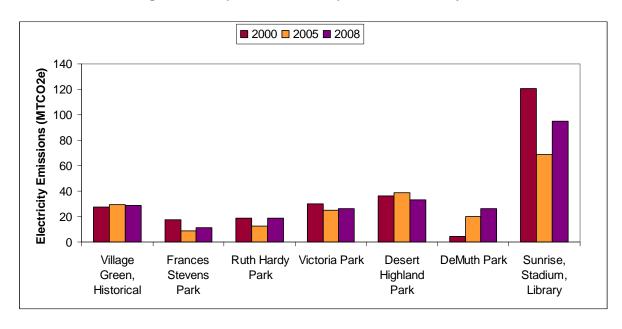


Figure 8: Comparison of Municipal Parks Electricity Use

Incorporation of the reductions in the AB 32 Scoping Plan (see Table 5) is shown in Figure 9.

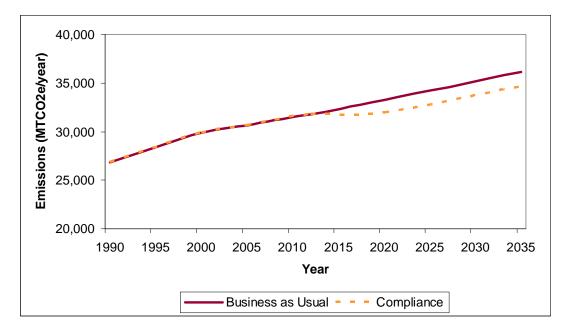


Figure 9: Government Inventory Growth

Compliance emissions for the years 2020 and 2035 are shown in Table 7. As shown in the table, reductions from AB 32 would result in a 4-percent reduction in 2020 and 2035.

	Emissions (MTCO ₂ e per year)				
Source	2020	2035			
Former Palm Springs Landfill	917	632			
Wastewater treatment plant (fugitive)	17,308	19,841			
Co-generation plants	8,746	8,746			
Airport fuel use	133	162			
City vehicle fleet	1,297	1,486			
Ozone-depleting substance substitutes	60	60			
Electricity – municipal	2,097	2,309			
Electricity – streetlights	647	712			
Employee commute	715	715			
Total	31,920	34,663			
Reduction from Business as Usual	4%	4%			
Notes: 2020 and 2035 are projections and do not represent MTCO ₂ e = metric tons of carbon dioxide equivalents Source: Appendix A.	esent targets.	1			

Table 7: Government Compliance Inventory

SECTION 4: COMMUNITY INVENTORY

4.1 - Methodology

Detailed information regarding the methodology of the community inventory is contained within Appendix A. There is currently no published guidance regarding methodology for a community inventory. Data was estimated using emission factors in the spreadsheets contained in Appendix A as well as the CACP model.

Mobile Sources

Mobile source emissions are from on-road and off-road vehicles traveling and performing work within the City. A description of these two sources is provided below.

On-Road Vehicles

On-road vehicles include gasoline and diesel passenger vehicles, light-duty trucks (and sports utility vehicles), and heavy-duty vehicles. Vehicle miles traveled within the City for 2000, 2005, and 2008 are from the California Department of Transportation (Caltrans). Caltrans does not have data available for 1990; therefore, vehicle miles traveled within the City in 1990 was backcast from 2000 per capita estimates (17.3 miles per day per person in 2000). The oldest year for which data is available from Caltrans is 1996, which was not used because the per capita rate is greater than in 2000. The vehicle miles traveled does not contain miles traveled outside of the City. In addition, the vehicle miles traveled data includes pass-through trips, which are trips that do not originate or end in the City. The Palm Springs 2007 General Plan contains average daily traffic for buildout of the General Plan on the main roads within the City, which was converted to vehicle miles traveled by multiplying by the road length and adding a percentage to include the local roads. Vehicle miles traveled projections for 2012, 2020, and 2035 were interpolated from 2008 and General Plan buildout estimates. The vehicle miles traveled data was entered into the CACP model to estimate the GHG emissions.

Off-Road Vehicles

Off-road equipment includes construction and mining equipment, generators, industrial equipment, lawn and garden equipment, and recreational equipment (off-road vehicles and all terrain vehicles). Emissions for Riverside County were estimated using the OFFROAD2007 model. Emissions within the City were apportioned from the County emissions on the basis of population. The OFFROAD2007 model also includes forecasts of emissions for future years.

Airport Fuel Use

Airport fuel use is estimated as discussed in the Government Inventory section.

Energy – Residential

Electricity

Residential electricity refers to the indirect emissions associated with generating electricity to be used in households in the City. Southern California Edison provided electricity usage for the entire City for 1990, 2000, 2005, and 2008 (reports are located in Appendix B). Emission factors are from eGRID (1990 uses 1996 factors; 2000 uses 2000 factors; and later years use emission factors for 2005). Electricity for future years was forecast by assuming that household growth was equal to an increase in residential electricity. The electricity usage data was converted to GHG emissions using emission factors specific to Southern California Edison.

Natural Gas

GHGs are emitted when natural gas is burned. Natural gas is used to heat residences, power dryers, heat water, and/or for natural gas kitchen stoves. The Southern California Gas Company provided natural gas usage for 2005 and 2008. Natural gas usage for other years was projected using the therms per year per residential unit in 2005 and was assumed to grow at the same rate as the number of housing units.

Energy – Non-Residential

Electricity

Electricity for the non-residential category includes emissions from power plants used to generate electricity that is used for hotels, restaurants, public buildings and uses (such as streetlights), commercial buildings, and industrial buildings. Southern California Edison provided electricity usage for 1990, 2000, 2005, and 2008. Emission factors are from eGRID (1990 uses 1996 factors; 2000 uses 2000 factors; and later years use emission factors for 2005). Municipal, water, and street lighting growth for future years is correlated to an increase in population. Growth in commercial/industrial is correlated to an increase in commercial/industrial acreage assumed at buildout in the Palm Springs 2007 General Plan. Emissions were estimated using emission factors specific to Southern California Edison.

Natural Gas

Natural gas from the commercial/industrial/public sector is used for space heating, cogeneration plants, to heat water, and industrial processes. Southern California Edison provided natural gas usage for the City for the "commercial/industrial" sector for 2005 and 2008. Natural gas for the future years was estimated using the therms per year per acre of commercial/industrial land in 2005. Natural gas for 1990 and 2000 was backcast using therms per capita in 2005. Emissions were estimated using the CACP model.

Waste

Former Palm Springs Landfill

Although this landfill has not been active for many years, methane is still emitted. Emissions are estimated as discussed in the Government Inventory.

Waste Generated

Waste generated by residents, employees, and visitors in the City are sent to a landfill outside of the City, where the trash generates GHG emissions through decomposition processes. The California Department of Resources Recycling and Recovery (2010) maintain records of waste generated by the City.

In 2005, the City expanded its efforts to increase recycling and decrease waste. In 2005, the City's recycling rate was around 54 percent (City of Palm Springs 2010a). The City worked with Palm Springs Disposal Services to tighten the City's waste reporting methods. The City also encouraged businesses to recycle by visiting with businesses and speaking at civic events. The City educated residents by producing recycling brochures, recycling wheels, construction and demolition brochures, fliers, refrigerator magnets, recyclable grocery bags, and other pieces of information available at City Hall, the library, other City facilities, and VillageFest. The City also used its website and closed circuit television (CCTV). The City increased the number of e-waste/shredding events. For the last reportable year, the City's recycling rate was over 69 percent. Between 2005 and 2008, waste decreased in the City by approximately 28,000 tons.

Waste generation for future years was estimated from per capita waste in 2008. The CACP model calculated emissions from waste generation.

Water and Wastewater

Emissions in this category include emissions from the electricity required to pump water and fugitive emissions from the wastewater treatment plant. Electricity data was provided by Southern California Edison. Wastewater treatment plant fugitive emissions are estimated as discussed in the Government Inventory.

Ozone-Depleting Substance Substitutes

In some cases, high global warming potential gases have been substituted for ozone depleting substances (ODS) in refrigeration and manufacturing processes. ODS are being phased out pursuant to the Montreal Protocol because they are gases that cause chemical destruction of the ozone in the stratosphere (a layer of air in the upper atmosphere). Ozone in the stratosphere is good because it absorbs ultraviolet radiation, which can cause skin cancer, cataracts, and other health problems in humans. Stratospheric ozone is not to be confused with ozone in the troposphere (the layer of air that we breathe), which is an air pollutant that results in health effects.

ODS substitutes can be released into the atmosphere when they leak out of refrigeration and air conditioning equipment contained in stationary and mobile applications. ODS substitutes are also used in solvent cleaning, foam production, sterilization, fire suppressants, and aerosols. Emissions of ODS substitutes consisted of 2.9 percent of California's GHG inventory in 2008 and are anticipated to increase to 7.5 percent by 2020. The United States is forecasting emissions of ODS substitutes to increase by 168 percent between 2005 and 2020 (United States Environmental Protection Agency 2010). The large increase is due to the growing use of ODS substitutes to replace ODS gases.

The ODS substitutes hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs) have high global warming potentials. The global warming potential is the potential of a gas or aerosol to trap heat in the atmosphere compared with the reference gas, carbon dioxide, which has a global warming potential of 1.

ODS substitutes are estimated for the City by apportioning California emissions on the basis of population. California has data and projections for the State for 1990, 2000, 2005, 2008, and 2020. Emissions for 2012 are interpolated from 2008 and 2020 data. Emission projections for 2035 are based on per capita emissions in 2020.

Sources Not Included: Indigo Power Plant

The Wildflower Energy Indigo Generation natural gas peaker power plant's emissions are not included within this GHG inventory because indirect emissions from power plants are included within the Electricity sector. Reported emissions from the peaker power plant in 2008 were 69,471 MTCO₂e and in 2009 were 38,406 MTCO₂e (Appendix A).

4.2 - Results

The community business as usual inventory is presented in Figure 10 and Table 8. A series of pie charts that display the percentages of the emissions between 1990 and 2020 is shown in Exhibit 2. ODS substitutes increase from less than 1 percent in 1990 to 7 percent of the emissions in 2035.

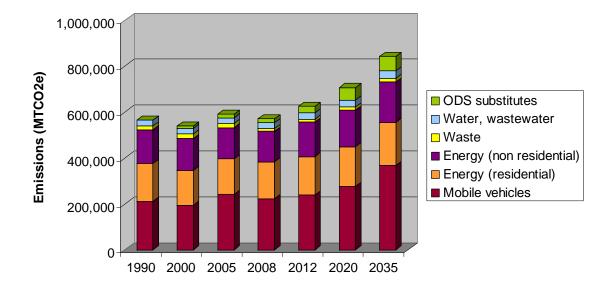
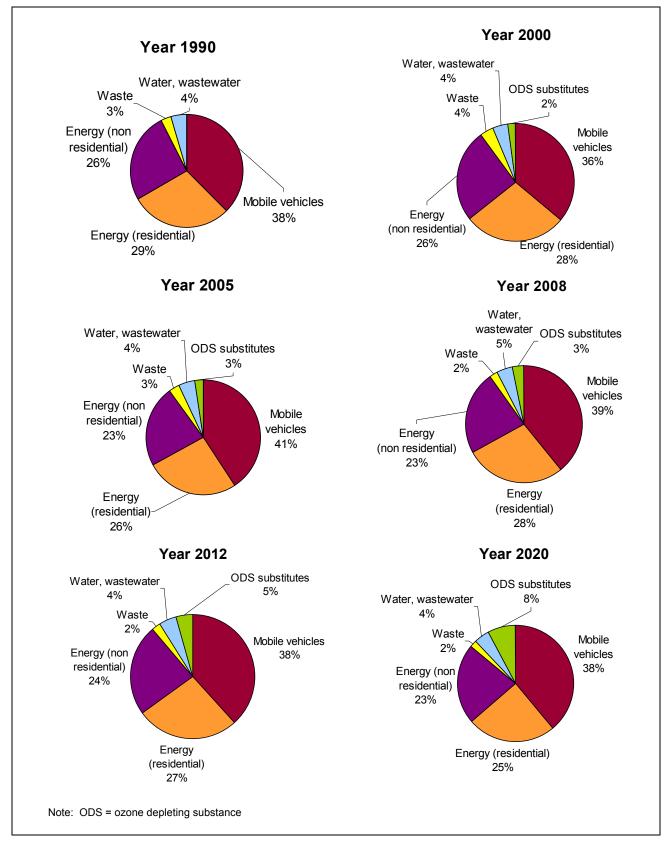



Figure 10: Community Historical and Future Business as Usual Inventory

Source: Michael Brandman Associates, 2010.

02270004 | 10/2010 | 2_Pie Charts.doc

Exhibit 2 Community Business as Usual Emissions

CITY OF PALM SPRINGS GREENHOUSE GAS INVENTORY

		GHG Emissions (MTCO₂e per year)								
Category	Source	1990	2000	2005	2008	2012	2020	2035		
High GWP gases	ODS substitutes	49	10,805	15,523	17,239	28,690	54,314	62,282		
Water, wastewater	Electricity-water	11,879	9,724	10,326	10,913	11,376	12,193	13,426		
	Wastewater treatment plant (fugitive)	13,236	14,028	14,847	15,282	15,957	17,308	19,841		
Waste	Former Palm Springs Landfill	1,811	1,482	1,341	1,263	1,145	917	632		
Waste generated		14,920	18,367	16,879	11,490	11,999	13,018	14,928		
residential)	Electricity - commercial/industrial	101,743	91,112	84,047	91,259	93,362	97,568	105,454		
	Natural gas – commercial/industrial	43,634	46,527	49,865	38,269	53,980	58,682	67,498		
	Electricity – municipal	834	734	1,809	2,208	2,302	2,467	2,716		
	Electricity – streetlights	741	652	633	681	710	761	838		
Energy (residential)	Electricity	97,594	84,957	84,905	89,656	91,682	95,472	101,761		
	Natural gas	66,838	67,566	70,297	70,554	75,265	78,667	85,046		
Mobile vehicles	Airport fuel use	53	79	86	109	115	133	162		
	Off-road vehicles	123	118	211	207	205	210	250		
	On-road passenger vehicles	192,081	179,116	218,483	206,505	221,092	251,733	331,876		
	On-road trucks	20,277	15,135	22,640	16,862	18,523	23,754	36,521		
Total	1	565,813	540,402	591,892	572,497	626,403	707,197	843,231		
Per Capita Emission	IS	14.1	12.6	12.9	12.2	12.8	13.3	13.8		

Table 8: Community Historical and Future Business as Usual Inventory

Notes:

GHG = greenhouse gas; MTCO₂e = metric tons of carbon dioxide equivalents (contains GHGs carbon dioxide, methane, nitrous oxide, and hydrofluorocarbons) GWP = global warming potential; ODS = ozone depleting substances Source: Appendix A. Figure 11 displays the emission percentages for 2035. Mobile vehicles and energy are the largest source of GHG emissions within the City.

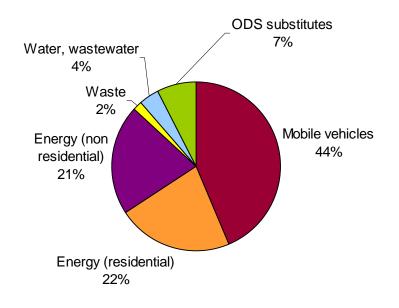
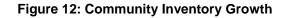



Figure 11: 2035 Community Business as Usual Emissions

Figure 12 displays the increase over time of the business as usual emissions and the compliance emissions. Compliance emissions are emissions with the reductions from AB 32. Also shown are the 1990 emissions over time.

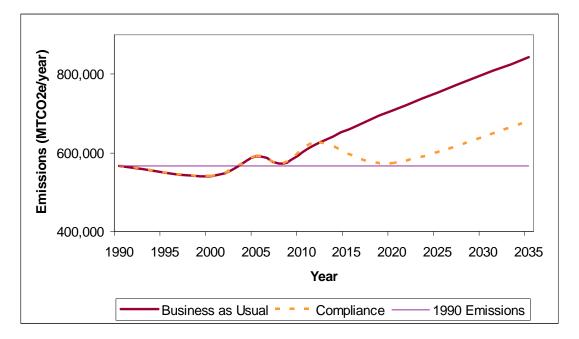


Table 9 displays the GHG emissions inventory of the community emissions with incorporation of reductions afforded by AB 32. As shown in the table, in 2020, the reductions reduce emissions by 18.9 percent from business as usual; in 2035, emissions are reduced by 19.5 percent.

		Emissions (MTCO ₂ e per year)			
Category	Source	2020	2035		
High GWP gases	ODS substitutes	33,131	37,992		
Water, wastewater	Electricity - water	10,364	11,412		
	Wastewater treatment plant (fugitive gases)	17,308	19,841		
Waste	Former Palm Springs Landfill	917	632		
	Waste generated	10,545	12,091		
Energy (other)	Electricity – commercial/industrial	82,933	89,636		
	Natural gas – commercial/industrial	58,682	67,498		
	Electricity – municipal	2,097	2,309		
	Electricity – streetlights	647	712		
Energy (residential)	Electricity	81,151	86,497		
	Natural gas	78,667	85,046		
Motor vehicles	Airport fuel use	133	162		
	Off-road vehicles	210	250		
	On-road passenger vehicles	173,696	228,994		
	On-road trucks	23,279	35,791		
Total		573,760	678,863		
Per Capita Emission	IS	10.8	11.1		
Reduction from Bus	iness as Usual	18.9%	19.5%		
Emissions are this p	1%	17%			

Table 9: Community Future Year Compliance Inventory

ODS = ozone depleting substance

Compliance emissions for the years 1990, 2000, 2005, 2008, and 2012 are assumed to be the same as business as usual (Table 8).

Source: Appendix A.

SECTION 5: GLOSSARY OF TERMS AND ACRONYMS

AB	Assembly Bill
ARB	The California Air Resources Board is a part of the California Environmental Protection Agency, an organization that reports directly to the Governor's Office in the Executive Branch of California State Government. The mission of the ARB is to promote and protect public health, welfare, and ecological resources through the effective and efficient reduction of air pollutants while recognizing and considering the effects on the economy of the State.
CEQA	The California Environmental Quality Act is a California statute passed in 1970 to institute a statewide policy of environmental protection.
BAU	Business as usual: Emissions that are expected to occur in a future year in the absence of emission reduction regulations and controls.
CO ₂	Carbon dioxide: A naturally occurring gas and a by-product of burning fossil fuels and biomass other industrial processes. It is the reference gas against which other GHGs are measured and therefore has a global warming potential of 1.
Climate Change	The statistically significant variation either in the mean state of the climate or in its variability, persisting for an extended period (typically decades or longer).
EPA	United States Environmental Protection Agency. The mission of EPA is to protect human health and to safeguard the natural environment—air, water and land—upon which life depends.
GHG	Greenhouse gas: A gas that absorbs infrared radiation in the atmosphere. GHGs as defined by AB 32 include carbon dioxide, methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride.
MTCO ₂ e	Metric tons of carbon dioxide equivalents: a measure of GHG emissions
MMTCO ₂ e	Million metric tons of carbon dioxide equivalents: a measure of GHG emissions
ODS	Ozone depleting substances: compounds that contributes to stratospheric ozone depletion. ODS include chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), halons, methyl bromide, carbon tetrachloride, hydrobromofluorocarbons, chlorobromomethane, and methyl chloroform. ODS are generally very stable in the troposphere and only degrade under intense ultraviolet light in the stratosphere. When they break down, they release chlorine or bromine atoms, which then deplete ozone.
SB	Senate Bill

SECTION 6: REFERENCES

6.1 - Acknowledgments

The following are individuals who assisted by providing data, peer review, and/or assistance. The names are in alphabetical order.

City of Palm Springs

Jan Anderson, Facilities Maintenance Manager David Barakian, Director of Public Works/City Engineer Cindy Berardi, City Clerk's Office Steve Bowser, Deputy Director of Aviation Gary Calhoun, Recycling Coordinator Craig Ewing, Director of Planning Services Marcus Fuller, Assistant City Engineer/Assistant Director of Public Works Kim Hardcastle, Human Resources Analyst Ken Lyon, Associate Planner Michele Mician, Manager, Office of Sustainability Steve Rakestraw, Fleet Operations/Maintenance Manager

Michael Brandman Associates

George Checkal, GIS Technician Ed Livingston, Editor David Mitchell, Air Quality Services Manager Arabesque Said, Analyst

South Coast Air Quality Management District

Ian MacMillan, Program Supervisor, CEQA Intergovernmental Review

Southern California Edison

Jennifer Menjivar, Region Manager, Local Public Affairs Adrina Young, Analyst-Program/Project

Southern California Gas Company

Deborah McGarrey, Public Affairs Manager

6.2 - References in Text

California Air Resources Board, 2008. Greenhouse Gas Inventory – 2020 Forecast. Website: www.arb.ca.gov/cc/inventory/data/forecast.htm.

California Air Resources Board, 2008. Scoping Plan. Website: www.arb.ca.gov/cc /scopingplan/document/scopingplandocument.htm, Accessed October 21, 2010.

- California Air Resources Board. 2010. Scoping Plan Measures Implementation Timeline. July 1, 2010. Website: www.arb.ca.gov/cc/scopingplan /sp_measures_implementation_timeline.pdf.
- California Air Resources Board, et al. 2010. California Air Resources Board, California Climate Action Registry, ICLEI – Local Governments for Sustainability, and the Climate Registry. Local Government Operations Protocol for the quantification and reporting of greenhouse gas emissions inventories. Version 1.1, May 2010. Website: www.arb.ca.gov/cc/protocols/localgov /localgov.htm. Accessed August 30, 2010.
- California Air Resources Board. 2010. California Air Resources Board's Implementation of IPCC's Mathematically Exact First-Order Decay Model. June 3. (model output contained in Appendix A)
- California Climate Change Center. 2006. Our Changing Climate, Assessing the Risks to California: A Summary Report from the California Climate Change Center. July 2006. CEC-500-2006-077. Accessed July 1, 2010. Website: www.climatechange.ca.gov/publications/biennial_reports/index.html.
- California Department of Finance. 2009. E-5 Population and Housing Estimates for Cities, Counties and the State, 2001-2009, with 2000 Benchmark. May. Website: www.dof.ca.gov/research/demographic/reports/estimates/e-5/2009/.
- California Energy Commission. 2010. California Energy Maps, California Building Climate Zone Map. Website: www.energy.ca.gov/maps/building_climate_zones.html. Accessed August 30, 2010.
- California Department of Resources Recycling and Recovery. Disposal Reporting System: Jurisdiction Disposal and Alternative Daily Cover tons by Facility. Website: www.calrecycle.ca.gov/LGCentral/Reports/DRS/Destination/JurDspFa.aspx, Accessed August 2, 2010.
- ICLEI, Local Governments for Sustainability. 2010. Clean Air and Climate Protection 2009 Software. Version 2.2.1b. April.
- Intergovernmental Panel on Climate Change 2007a. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller [eds.]). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, Website: www.ipcc.ch/ipccreports/ar4-wg1.htm, Accessed July 1, 2010
- Intergovernmental Panel on Climate Change 2007b. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Core Writing Team, Pachauri, R.K and Reisinger, A. [eds.]). IPCC, Geneva, Switzerland. Website: www.ipcc.ch/publications_and_data/ar4/syr/en/contents.html. Accessed July 1, 2010.
- Moser et al. 2009. Moser, Susie, Guido Franco, Sarah Pittiglio, Wendy Chou, and Dan Cayan. 2009. The Future Is Now: An Update on Climate Change Science

Impacts and Response Options for California. California Energy Commission, PIER Energy-Related Environmental Research Program. CEC-500-2008-071. Website: www.energy.ca.gov/2008publications/CEC-500-2008-071/CEC-500-2008-071.PDF Accessed July 1, 2010

- Palm Springs, City of, 2009. Inside Palm Springs, News from City Hall. April. Website: www.palmsprings-ca.gov/Modules/ShowDocument.aspx?documentid=7001. Accessed October 18, 2010.
- Palm Springs, City of, 2010a. Wastewater Treatment Plant Capital Rehabilitation and Repair Plan. Website: www.palmsprings-ca.gov/index.aspx?page=877. Accessed October 18, 2010.
- Palm Springs, City of, 2010b. Gary Calhoun, City of Palm Springs Recycling Coordinator. Personal communication: email. October 18, 2010.
- Palm Springs Resolution No. 22714. A Resolution of the City Council of the City of Palm Springs, California, Approving the Budget for Fiscal Year 2010-11 and such other matters as required. Website: www.palmspringsca.gov /index.aspx?page=452. Accessed August 30, 2010.
- Southern California Edison. 2010. Greenhouse Gas Initiatives. Website: www.edison.com /environment/eme_ghg.asp. Accessed October 25, 2010.
- Southern California Edison. 2006. Southern California Edison signs largest Wind Energy Contract in U.S. Renewable Industry History. Website: http://www.edison.com/pressroom/pr.asp?id=6487. Accessed October 25, 2010.
- The Source Group. 2003. Final Draft Removal Action Workplan Former Palm Springs Landfill, Intersection of Gene Autry Trail and Ramon Road, Palm Springs, California. December 16,. Website: www.dtsc.ca.gov/SiteCleanup/Projects /upload/Palm-Springs-Landfill_REP_RAW.pdf.
- United States Environmental Protection Agency. 2010. 2010 U.S. Greenhouse Gas Inventory Report – Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2008. EPA-430-R-10-006. Washington, D.C. Website: www.epa.gov /climatechange/emissions/usinventoryreport.html. Accessed July 5, 2010.
- Western Regional Climate Center. 2006. Palm Springs, California. Period of Record General Climate Summary. From 1927 to 2006. Cooling Degree Days Heating Degree Days. Website: www.wrcc.dri.edu/cgibin/cliMAIN.pl?capIms+sca. Accessed August 30, 2010.

6.3 - Figure References

Figure 1. Michael Brandman Associates.

Figure 2: City of Palm Springs Population and Housing Trends. Michael Brandman Associates. See "Population and Housing Summary" spreadsheet in Appendix A.

Figure 3: The Greenhouse Effect. UNEP/GRID-Arendal. Factors influencing the greenhouse effect [Internet]. UNEP/GRID-Arendal Maps and Graphics Library; 2002 (cited

2010 Sep 4). Cartographer/Designer: Philippe Rekacewicz. Website: http://maps.grida.no/go/graphic/factors_influencing_the_greenhouse_effect.

Figure 4: Global Atmospheric Concentration of CO₂. UNEP/GRID-Arendal. Global atmospheric concentration of CO2. UNEP/GRID-Arendal Maps and Graphics Library. 2000. Website: http://maps.grida.no/go/graphic/global-atmospheric-concentration-of-co2. Accessed August 28, 2010.

Figure 5: United States Greenhouse Gas Emissions Trends. United States Environmental Protection Agency. Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2008. April 15, 2010. Website: www.epa.gov/climatechange/emissions/downloads10/US-GHG-Inventory-Fast-Facts-2008.pdf. Accessed September 3, 2010. EPA 430-R-10-006.

Figure 6: California Greenhouse Gas Emissions in 2008. California Air Resources Board. Greenhouse Gas Inventory Data - Graphs. Website: www.arb.ca.gov/cc/inventory /data/graph/graph.htm. Accessed August 28, 2010.

Figure 7 through Figure 12. Michael Brandman Associates.

6.4 - Photograph References

Cover: Palm Springs. iStock photo 12025754.

Palm Trees in the City of Palm Springs. iStock photo 2610434.

Palm Springs and the San Jacinto Mountains. Palm Springs. View of Palm Springs and Coachella Valley with San Jacinto Mountains in the background. iStock photo 12134415.

Wind Turbines in Palm Springs. iStock photo 12763144. Photo by Lawrence Freytag on April 7, 2010, east of Palm Springs.

Wildfire in California. California desert hills wild fire sparked by lightening. Photo by David Mantel. iStock photo 13790519.

Palm Springs International Airport Equipment. Photo by Michael Brandman Associates.

Former Palm Springs Landfill Remediation. California Environmental Protection Agency, Department of Toxic Substances Control. Brownfields Cleanup. Sara Amir. Website: www.swrcb.ca.gov/losangeles/water_issues/programs/remediation/presentations/04_1118/b rownfields%20workshop%20with%20the%20water%20board%203.pdf.

6.5 - Exhibit References

Exhibit 1. Michael Brandman Associates.

Exhibit 2. Michael Brandman Associates.

Appendix A: Spreadsheets and Model Output

City of Palm Springs Greenhouse Gas Inventory Greenhouse Gas Emissions Prepared by Michael Brandman Associates

	Emissions (metric tons of carbon dioxide equivalents, MTCO2e)						
—	1990	2000	2005	2008	2012	2020	2035
Business as Usual Government							
Former Palm Springs Landfill	1,811	1,482	1,341	1,263	1,145	917	632
Wastewater treatment plant (fugitiv	13,236	14,028	14,847	15,282	15,957	17,308	19,841
Cogeneration plants	6,646	10,020	9,112	8,746	8,746	8,746	8,746
Airport fuel use	53	79	86	109	115	133	162
City vehicle fleet	1,687	1,495	1,450	1,559	1,628	1,767	2,026
High GWP gases	99	99	99	99	99	99	99
Electricity - municipal	834	734	1,809	2,208	2,302	2,467	2,716
Electricity - streetlights	741	652	633	681	710	761	838
Employee commute	1,705	1,312	1,216	1,280	1,036	1,036	1,036
Total	26,812	29,900	30,592	31,227	31,739	33,235	36,096
Reductions							
Government							
Former Palm Springs Landfill	-	-	-	-	-	-	-
Wastewater treatment plant (fugitiv	-	-	-	-	-	-	-
Cogeneration plants	-	-	-	-	-	-	-
Airport fuel use	-	-	-	-	-	-	-
City vehicle fleet	-	-	-	-	-	27%	27%
High GWP gases	-	-	-	-	-	39%	39%
Electricity - municipal	-	-	-	-	-	15%	15%
Electricity - streetlights	-	-	-	-	-	15%	15%
Employee commute	-	-	-	-	-	31%	31%
Compliance							
Government	1 0 1 1	1 400	1 0 4 4	1 060	1 1 4 5	017	622
Former Palm Springs Landfill	1,811	1,482	1,341	1,263	1,145	917	632
Wastewater treatment plant (fugitiv	13,236	14,028	14,847	15,282	15,957	17,308	19,841
Cogeneration plants	6,646	10,020	9,112	8,746	8,746	8,746	8,746
Airport fuel use	53	79	86	109	115	133	162
City vehicle fleet	1,687	1,495	1,450	1,559	1,628	1,297	1,486
High GWP gases	99	99	99	99	99	60	60
Electricity - municipal	834	734	1,809	2,208	2,302	2,097	2,309
Electricity - streetlights	741	652	633	681	710	647	712
Employee commute	1,705	1,312	1,216	1,280	1,036	715	715
Total	26,812	29,900	30,592	31,227	31,739	31,920	34,664
Reductions	0%	0%	0%	0%	0%	4%	4%
Business as Usual Community							
ODS substitutes	49	10,805	15,523	17,239	28,690	54,314	62,282
Electricity - water	11,879	9,724	10,326	10,913	11,376	12,193	13,426
Wastewater treatment plant (fugitiv	13,236	14,028	14,847	15,282	15,957	17,308	19,841
Former Palm Springs Landfill	1,811	1,482	1,341	1,263	1,145	917	632
Waste generated	14,920	18,367	16,879	11,490	11,999	13,018	14,928
Electricity - commercial/industrial	101,743	91,112	84,047	91,259	93,362	97,568	105,454
Natural gas - non-residential	43,634	46,527	49,865	38,269	53,980	58,682	67,498
Electricity - municipal	834	734	1,809	2,208	2,302	2,467	2,716
Electricity - streetlights	741	652	633	681	710	761	838
Electricity - residential	97,594	84,957	84,905	89,656	91,682	95,472	101,761
Natural gas - residential	66,838	67,566	70,297	70,554	75,265	78,667	85,046
Airport fuel use	53	79	86	109	115	133	162
Offroad vehicles and equipment	123	118	211	207	205	210	250
Onroad passenger vehicles	192,081	179,116	218,483	206,505	221,092	251,733	331,876
Onroad trucks	20,277	15,135	22,640	16,862	18,523	23,754	36,521
Total	565,814	540,400	591,892	572,497	626,405	707,197	843,231

City of Palm Springs Greenhouse Gas Inventory Community Reductions Prepared by Michael Brandman Associates

	1990	2000	2005	2008	2012	2020	2035
Compliance Reductions							
Community							
ODS substitutes	-	-	-	-	-	39%	39%
Electricity - water	-	-	-	-	-	15%	15%
Wastewater treatment plant (fugitiv	-	-	-	-	-		
Former Palm Springs Landfill	-	-	-	-	-		
Waste generated	-	-	-	-	-	19%	19%
Electricity - commercial/industrial	-	-	-	-	-	15%	15%
Natural gas - non-residential	-	-	-	-	-		
Electricity - municipal	-	-	-	-	-	15%	15%
Electricity - streetlights	-	-	-	-	-	15%	15%
Electricity - residential	-	-	-	-	-	15%	15%
Natural gas - residential	-	-	-	-	-		
Airport fuel use	-	-	-	-	-		
Offroad vehicles and equipment	-	-	-	-	-		
Onroad passenger vehicles	-	-	-	-	-	31%	31%
Onroad trucks	-	-	-	-	-	2%	2%
Compliance	1990	2000	2005	2008	2012	2020	2035
Community							
ODS substitutes	49	10,805	15,523	17,239	28,690	33,131	37,992
Electricity - water	11,879	9,724	10,326	10,913	11,376	10,364	11,412
Wastewater treatment plant (fugitiv	13,236	14,028	14,847	15,282	15,957	17,308	19,841
Former Palm Springs Landfill	1,811	1,482	1,341	1,263	1,145	917	632
Waste generated	14,920	18,367	16,879	11,490	11,999	10,545	12,091
Electricity - commercial/industrial	101,743	91,112	84,047	91,259	93,362	82,933	89,636
Natural gas - non-residential	43,634	46,527	49,865	38,269	53,980	58,682	67,498
Electricity - municipal	834	734	1,809	2,208	2,302	2,097	2,309
Electricity - streetlights	741	652	633	681	710	647	712
Electricity - residential	97,594	84,957	84,905	89,656	91,682	81,151	86,497
Natural gas - residential	66,838	67,566	70,297	70,554	75,265	78,667	85,046
Airport fuel use	53	79	86	109	115	133	162
Offroad vehicles and equipment	123	118	211	207	205	210	250
Onroad passenger vehicles	192,081	179,116	218,483	206,505	221,092	173,696	228,994
Onroad trucks	20,277	15,135	22,640	16,862	18,523	23,279	35,791
Total	565,814	540,400	591,892	572,497	626,405	573,760	678,863
Reduction from Business as Usual	0%	0%	0%	0.0%	0.0%	18.9%	19.5%
Difference from 1990 Emissions	0%	5%	-4%	-1%	-10%	-1%	-17%

CACP Output Conversions

Conversion factor (tons - metric tons) 0.907185

	1990	2000	2005	2008	2012	2020	2035
Government Business as Usual							
CACP Output	58	87	95	100	127	147	179
Airport fuel City vehicle fleet	58 1,860	ەر 1,648	95 1,598	120 1,719	1,795	1,948	2,233
Employee commute	1,800	1,040	1,340	1,719	1,142	1,142	1,142
Cogeneration plants	7,326	11,045	10,044	9,641	9,641	9,641	9,641
e egonoration plante	1,020	11,010	10,011	0,011	0,011	0,011	0,011
Metric tons							
Airport fuel	53	79	86	109	115	133	162
City vehicle fleet	1,687	1,495	1,450	1,559	1,628	1,767	2,026
Employee commute	1,705	1,312	1,216	1,280	1,036	1,036	1,036
Cogeneration plants	6,646	10,020	9,112	8,746	8,746	8,746	8,746
0							
Community Business as Usual CACP Output							
Waste	16,447	20,246	18,606	12,666	13,227	14,350	16,455
Onroad vehicles, trucks	234,085	214,124	265,792	246,220	264,131	303,672	406,088
Natural gas residential	73,676	74,479	77,489	77,773	82.965	86,715	93,747
Natural gas commercial/industrial	48,098	51,287	54,967	42,184	59,503	64,686	74,404
C .							
Metric tons							
Waste	14,920	18,367	16,879	11,490	11,999	13,018	14,928
Onroad vehicles, trucks	212,358	194,250	241,123	223,367	239,616	275,487	368,397
Natural gas residential	66,838	67,566	70,297	70,554	75,265	78,667	85,046
Natural gas commercial/industrial	43,634	46,527	49,865	38,269	53,980	58,682	67,498

CACP = The emissions are generated by ICLEI's Clean Air and Climate Protection Software 2009, Version 2.2.1b, April 2010. Note that the emissions as generated by CACP are presented in tons, which are converted to metric tons by multiplying by 0.907185. Metric tons are shown here.

Note: the CACP model does not distinguish between passenger vehicles and heavy duty trucks. Therefore, the percentages identified in the Vehicle Miles Traveled Analysis worksheet are applied to the total on road vehicle emissions to segregate the groups.

City of Palm Springs Greenhouse Gas Inventory Emissions Summary

Prepared by Michael Brandman Associates

Business as Usual	1990	2000	2005	2008	2012	2020	2035
Community Mobile vehicles	212,534	194,447	241,420	223,683	239,936	275,830	368,810
	212,534 164,432	194,447	241,420 155,202	223,003 160,210	239,930 166,947	275,830 174,139	186,807
Energy (residential)				•	•		
Energy (non residential)	146,952	139,025	136,355	132,417	150,354	159,478	176,506
Waste	16,731	19,849	18,220	12,753	13,145	13,935	15,559
Water, wastewater	25,115	23,751	25,173	26,194	27,333	29,502	33,267
ODS substitutes	49	10,805	15,523	17,239	28,690	54,314	62,282
Total	565,814	540,400	591,892	572,497	626,405	707,197	843,231
Business as Usual Government							
Wastewater treatment plant	13,236	14,028	14,847	15,282	15,957	17,308	19,841
Cogeneration plants	6,646	10,020	9,112	8,746	8,746	8,746	8,746
Mobile fuel use	1,740	1,574	1,536	1,668	1,744	1,901	2,188
Electricity	1,576	1,386	2,442	2,889	3,012	3,228	3,554
Employee commute	1,705	1,312	1,216	1,280	1,036	1,036	1,036
Former Palm Springs Landfill	1,811	1,482	1,341	1,263	1,145	917	632
High GWP gases	99	99	99	99	99	99	99
Total	26,812	29,900	30,592	31,227	31,739	33,235	36,096
Summary							
Community Business as Usual	565,814	540,400	591,892	572,497	626,405	707,197	843,231
Community Compliance	565,814	540,400	591,892	572,497	626,405	573,760	678,863
Government Business as Usual	26,812	29,900	30,592	31,227	31,739	33,235	36,096
Government Compliance	26,812	29,900	30,592	31,227	31,739	31,920	34,664

City of Palm Springs Greenhouse Gas Inventory

Population and Housing Summary

Prepared by Michael Brandman Associates

Palm Springs Population Housing Population growth from 2 Housing growth from 20		2000 42805 30822	2005 45877 32068	2008 47019 33558	2012 49103 34334 4.2% 2.3%	2020 53271 35886 11.7% 6.5%	2035 61086 38796 23.0% 13.5%
Riverside County	1990	2000	2005	2008	2012	2020	2035
Population	1,170,413	1,545,387	1,883,735	2,078,601	2354017	2,904,848	3,805,340
State of California	1990	2000	2005	2008	2012	2020	2035
Population	29,758,213	33,873,086	36,676,931	37,883,992	39,967,969	44,135,923	51,753,503
Population Interpolation	2030	2035	2040				
Riverside County	3,507,498	3,805,340	4,103,182				
California	49,240,891	51,753,503	54,266,115				
City of Palm Springs - Muni	icipal Governm	ent Employees	6				

	1990	2000	2005	2008	2010
FTE employees	519	458	450	485	390
Furlough began May 3, 2009					

Sources:

- Population and housing in 1990 from: State of California, Department of Finance. E-8 Historical Population and Housing Estimates for Cities, Counties and the State, 1990-2000. Sacramento, California, August 2007. www.dof.ca.gov/research/demographic/reports/estimates/e-8/

- Population and housing for 2000, 2005, 2008 from: State of California, Department of Finance. E-5 Population and Housing Estimates for Cities, Counties and the State, 2001-2009, with 2000 Benchmark. May 2009. www.dof.ca.gov/research/demographic/reports/estimates/e-5/2009/

- Population and housing for 2012, 2020, and 2035 interpolated from 2008 and 2100 data.

- Population in California and Riverside County for 2020, 2030, and 2040 from: State of California, Department of Finance, Population Projections for California and Its Counties 2000-2050, Sacramento, California, July 2007. www.dof.ca.gov/research/demographic/reports/projections/p-1/. Note that 2035 population is interpolated from 2030 and 2040.

- Population and housing in Palm Springs in 2100 from: City of Palm Springs General Plan, Land Use Element, Table 2-1 (although the date is not listed, the General Plan buildout is assumed to be 2100 for these purposes).

- The number of FTE (full time equivalent) employees for the Palm Springs government/municipal is from the City of Palm Springs, Kim Hardcastle, Human Resources Analyst, September 20, 2010, personal communication.

City of Palm Springs Greenhouse Gas Inventory Vehicle Miles Traveled Analysis

Prepared by Michael Brandman Associates

Palm springs population	1990 40,144	1996 41,341	2000 42,805	2005 45,877	2007 46,796	2008 47,019	2009 47,601	2012 49,103	2020 53,271	2035 61,086	2100 94,949
Vehicle Miles Traveled Source DOT VMT/Day - Palm Springs DOT VMT/year Per capita VMT/day (based on DOT)		892,200 325,653,000 21.6	742,200 270,903,000 17.3	938,970 342,724,050 20.5	965,360 352,356,400 20.6	915,630 334,204,950 19.5	899,440 328,295,600 18.9				
Speed zone survey (VMT/day) Percent difference: Speed zone and DOT (lo	cal roads)				803,978 17%						
Palm Springs GP Traffic Study VMT/Year Addition for local roads (17%) Total GP VMT/Year											847,151,147 144,015,695 991,166,842
VMT/year based on 2000 DOT per capita	254,062,143										
VMT Interpolated from 2008 and 2100								362,768,511	419,895,632	527,008,984	
For Comparison: VMT per capita - LMVs SCAG VMT/Day/Capita LMVs VMT/year (based on 2005 SCAG per capita VMT/year (based on 2020 SCAG per capita) VMT/year (based on 2035 SCAG per capita)		324,574,392	336,068,476	21.51 360,187,209	367,402,415	369,153,222		385,514,336	20.83 405,014,766	20.99 467,999,461	
Percent of Total Gasoline											
Automobiles	50.7%		48.1%	43.7%		45.7%		46.1%	45.1%	42.0%	
Light duty trucks	33.7%		40.2%	43.2%		43.4%		43.0%	43.6%	45.6%	
Heavy duty trucks Diesel	4.5%		2.9%	2.7%		2.5%		2.6%	2.5%	2.4%	
Automobiles	0.7%		0.2%	0.1%		0.1%		0.1%	0.0%	0.0%	
Light duty trucks	0.8%		0.8%	0.9%		0.7%		0.5%	0.2%	0.0%	
Heavy duty trucks	9.5%		7.8%	9.4%		7.5%		7.7%	8.6%	9.9%	
Business as Usual VMT: Input into CACP Mode	I										
Gasoline	1990		2000	2005		2008		2012	2020	2035	
Automobiles	128,895,242		130,190,965	149,685,011		152,833,504		167,415,654	189,211,921	221,564,669	
Light duty trucks	85,492,680		108,793,165	148,019,074		145,140,370		156,111,745	183,048,468	240,360,406	
Heavy duty trucks	11,552,839		7,915,052	9,321,314		8,392,509		9,334,841	10,615,759	12,713,484	
Diesel	-		-	-		-		-	-	-	
Automobiles	1,847,451		640,188	458,983		318,415		196,346	66,452	5,435	
Light duty trucks	2,006,282		2,250,358	3,031,552		2,297,137		1,660,525	753,126	114,144	
Heavy duty trucks	24,259,290		21,106,805	32,179,784		25,228,701		28,043,791	36,205,442	52,245,409	
Total VMT/Year (from DOT)	254,062,143		270,903,000	342,724,050		334,204,950		362,768,511	419,895,632	527,008,984	

Notes on "Vehicle Miles Traveled Analysis"

Abbreviations: DOT = Department of Transportation; LMV = light motor vehicles; VMT = vehicle miles traveled; SCAG = Southern California Association of Governments

- DOT VMT/Day: California Department of Transportation. California Public Road Data. www.dot.ca.gov/hq/tsip/hpms/datalibrary.php Data is from Table 6 in the reports (Maintained Mileage and Daily Vehicle Miles of Travel Estimates by Jurisdiction), which is from the annual maintained mileage reports submitted by the agencies.

- Palm Springs GP Traffic Study (see next page): General Plan Update Traffic Analysis, Prepared for the City of Palm Springs, Prepared by Parson Brinckerhoff Quade & Douglas, Inc., May 25, 2007. http://www.ci.palm-springs.ca.us/Modules/ShowDocument.aspx?documentid=2111

- Speed Zone Survey: Citywide Speed Zone Survey, Engineering and Traffic Surveys in the City of Palm Springs, 2007. Prepared by Albert Grover & Associates, July 2007. http://www.palmsprings-ca.gov/Modules/ShowDocument.aspx?documentid=1458

- SCAG VMT/Day/Capita for LMVs: Southern California Association of Governments. Attachment 2. Final Scenario Exercises for SB 375 Target-Setting. 6/3/2010 www.arb.ca.gov/cc/sb375/mpo/scag/alt-scenario-scaq-060410.xls

- Percent of Total: from EMFAC2007, Burden, Riverside County Average, 1990, 2000, 2005, 2008, 2012, 2020, and 2035. Obtained the percentage of each vehicle category for each year. Automobiles include LDA and MY. Light duty trucks includes categories LDT-1, LDT-2, MDV. Heavy duty trucks include categories LHDT-1, LHDT-2, MHDT, HDT, OBUS, SBUS, UB, and MH.

- Forecasts of VMT for 2012 and 2020 were interpolated from 2008 and 2035 values.

- Input into the CACP model: The vehicle miles per year were entered into the CACP model. For 1990, the model years for the vehicle are the "alt. method" except for light gasoline trucks and gasoline automobiles, which are for model years 1987 to 1993. For the year 2035, the model year for the vehicles and trucks was 2005 for all years.

General Plan Buildout Traffic Vehicle Miles Traveled									
	Leasting	Distance	ADT						
Facility	Location	(feet)	ADT	VMT/Day					
19th Avenue Alejo Road	West of Indian Canyon Drive Belardo Road to Palm Canyon Drive	5280 500	8200 5200	8200 492					
	Palm Canyon Drive to Indian Canyon Drive	378	15000	492 1074					
Alejo Road	, , , , , , , , , , , , , , , , , , ,	2639	11200	5598					
Alejo Road	Indian Canyon Drive to Avenida Caballeros	2641	10200	5102					
Alejo Road Alejo Road	Avenida Caballeros to Sunrise Way	3034	7000	4022					
Amado Road	Sunrise Way to Farrell Drive West of Palm Canyon Drive	330	7400	4022					
Amado Road	Palm Canyon Drive to Indian Canyon Drive	379	4600	330					
Amado Road	Indian Canyon Drive to Avenida Caballeros	2626	4000 5400	2686					
Amado Road	Avenida Caballeros to Sunrise Way	2641	3000	1501					
Andreas Road East	Indian Canyon Drive to Calle Alvarado	1847	4100	1434					
Araby Drive	South of East Palm Canyon Drive	4787	900	816					
Arenas Road	Belardo Road to Palm Canyon Drive	328	1400	87					
Arenas Road	Palm Canyon Drive to Indian Canyon Drive	376	4100	292					
Arenas Road	Indian Canyon Drive to Avenida Caballeros	2626	4100	2039					
Avenida Caballeros	San Rafael Drive to Racquet Club Road	2676	800	405					
Avenida Caballeros	Racquet Club Road to Vista Chino	2661	2800	1411					
Avenida Caballeros	Vista Chino to Tachevah Drive	2641	7400	3701					
Avenida Caballeros	Tachevah Drive to Alejo Road	2646	2100	1052					
Avenida Caballeros	Alejo Road to Amado Road	1287	8100	1974					
Avenida Caballeros	Amado Road to Tahquitz Canyon Drive	1299	9200	2263					
Avenida Caballeros	Tahquitz Road to Ramon Road	2649	11300	5669					
Avenida Granada	South Palm Canyon Drive to Camino Real	2101	1900	756					
Baristo Road	Palm Canyon Drive to Indian Canyon Drive	396	2300	173					
Baristo Road	Avenida Caballeros to Sunrise Way	2619	2200	1091					
Baristo Road	Farrell Drive to El Cielo Road	2236	9300	3938					
Barona Road	South of East Palm Canyon Drive	3427	1200	779					
Belardo Road	Alejo Road to Tahquitz Road	2609	1300	642					
Belardo Road	Tahquitz Road to Ramon Road	2630	3600	1793					
Calle Alvarado	South of Alejo Road	3184	1800	1085					
	t La Verne Way to Toledo Avenue	4816	1400	1277					
Camino Real	Ramon Road to Sunny Dunes Road	1320	5000	1250					
Camino Real	Mesquite Avenue to East Palm Canyon Drive	2636	2900	1448					
Camino Real	East Palm Canyon Drive to East Twin Palms	477	4200	379					
Camino Real	La Verne Way to Murray Canyon Drive	4964	2300	2162					
Cerritos Road	Racquet Club Drive to Vista Chino	2663	6600	3329					
Cerritos Road	Vista Chino to Tachevah Drive	2623	11400	5663					
Cerritos Road	Tachevah Drive to Alejo Road	2625	6600	3281					
Cherokee Way	North of East Palm Canyon Drive	995	2600	490					
Cherokee Way	South of East Palm Canyon Drive	983	1400	261					
Chia Road	Sunrise Way to Cerritos Drive	1319	1000	250					
Compadre Road	North of Ramon Road	1327	1000	251					
Compadre Road	Ramon Road to Sunny Dunes	1323	4800	1203					
Crossley Road	Ramon Road to Mesquite Avenue	2623	16400	8147					
Crossley Road	South of Mesquite Avenue	2653	19200	9647					
Dillon Road	Diablo Road to Indian Canyon Drive	10594	13200	26485					
El Ceilo Road	Tahquitz Road to Ramon Road	2595	9200	4522					
El Cielo Road	Ramon Road to Escoba Drive	5297	10200	10233					
Farrell Drive	Joyce Drive to Racquet Club Drive	2490	2900	1368					
Farrell Drive	Racquet Club Drive to Vista Chino	2518	8800	4197					
Farrell Drive	Vista Chino to Tachevah Drive	2675	21200	10741					
Farrell Drive	Tachevah Drive to Alejo Road	5732	19900	21604					
Farrell Drive	Alejo Road to Tahquitz Road	2623	20100	9985					
Farrell Drive	Tahquitz Road to Ramon Road	2634	18400	9179					
Farrell Drive	Ramon Road to Mesquite Avenue	2657	9600	4831					
Farrell Drive	Mesquite Avenue to East Palm Canyon Drive	2813	7000	3729					
Francis Drive	Indian Canyon Drive to Avenida Caballeros	2628	1300	647					
Francis Drive	Avenida Caballeros to Sunrise Way	2650	1300	652					
Gene Autry Trail	I-10 to Via Escuela	11033	41500	86718					
Gene Autry Trail	Via Escuela to Vista Chino	1310	37000	9180					
Gene Autry Trail/SR-111	Vista Chino to Ramon Road	11655	39000	86088					

General Plan Buildout Traffi	Distanco			
Facility	Location	Distance (feet)	ADT	VMT/Day
Gene Autry Trail/SR-111	Ramon Road to Mesquite Avenue	2632	27100	13509
Gene Autry Trail/SR-111	Mesquite Avenue to Seven Lakes Drive	4007	27100	20566
Gene Autry Trail/SR-111	Seven Lakes Drive to East Palm Canyon Driv	1594	19200	5796
Gene Autry Trail	South of East Palm Canyon Drive	325	15400	948
Indian Avenue	Dillon Road to 19th Avenue	5312	41600	41852
Indian Avenue	19th Avenue to I-10	1632	44900	13878
Indian Canyon Drive	I-10 to Sunrise Parkway	12380	53500	125441
Indian Canyon Drive	Sunrise Parkway to Tramview Road	1300	34700	8544
Indian Canyon Drive	Tramview Road to San Rafael Drive	2602	31700	15622
Indian Canyon Drive	San Rafael Drive to Racquet Club Road	2686	23900	12158
Indian Canyon Drive	Racquet Club Road to Vista Chino	2644	23900	11968
Indian Canyon Drive	Vista Chino to Tachevah Drive	2639	23800	11895
Indian Canyon Drive	Tachevah Drive to Alejo Road	2633	23400	11669
Indian Canyon Drive NB	Alejo Road to Tahquitz Road	2651	18200	9138
Indian Canyon Drive NB	Tahquitz Road to Ramon Road	2633	21500	10721
Indian Canyon Drive NB	South of Ramon Road	644	15000	1830
Joyce Drive East	Sunrise Way to Farrell Drive	2508	2800	1330
La Verne Way	South Palm Canyon Drive to Camino Real	2536	6400 7100	3074 4495
La Verne Way	Camino Real to Twin Palms Drive East South of East Palm Canyon Drive	3343 740	17300	4495 2425
La Verne Way	5	4004	2000	2425 1517
Las Vegas Road Matthew Drive	North Palm Canyon Drive to Indian Canyon E West of Gene Autry Trail	4004 1637	4600	1426
Mesquite Avenue	West of South Palm Canyon Drive	1877	4000 6600	2346
Mesquite Avenue	South Palm Canyon Drive to Camino Real	1960	4900	1819
Mesquite Avenue	Camino Real to Sunrise Way	3310	4900	3072
Mesquite Avenue	Sunrise Way to Farrell Drive	3077	4900	2856
Mesquite Avenue	El Cielo Road to Paseo Dorotea	3526	5900	3940
Mesquite Avenue	Paseo Dorotea to Vella Road	767	11500	1671
Mesquite Avenue	Vella Road to Gene Autry Trail	1326	16300	4094
Dinah Shore Drive	Gene Autry Tail to San Luis Rey Drive	1359	26400	6795
Dinah Shore Drive	San Luis Rey Drive to Crossley Road	1286	29000	7063
Dinah Shore Drive	East of Crossley Drive	37564	31800	226238
Mission Drive	East of Gene Autry Trail	3549	800	538
Murray Canyon Drive	South Palm Canyon Drive to Camino Real	2366	2900	1300
Murray Canyon Drive	Camino Real to Toledo Avenue	3347	2900	1838
North Calle Encilia	Alejo Road to Tahquitz Road	2607	9100	4493
North Calle Encilia	Tahquitz Road to Ramon Road	2617	6300	3123
North Calle El Segundo	Alejo Road to Tahquitz Road	2629	2000	996
North Calle El Segundo	Tahquitz Road to Ramon Road	2611	2400	1187
Palm Canyon Drive/SR-111 S		92261 3000	17800 28300	311031 16080
-	Sunrise Parkway to Gateway Drive	3000 1607	28300	8857
5	San Rafael Road to Racquet Club Road	2839	37700	20271
	Racquet Club Road to Via Escuela	1712	35100	11381
Palm Canyon Drive North/SR-	•	1403	36600	9725
Palm Canyon Drive North	Vista Chino to Tachevah Road	2639	22500	11246
Palm Canyon Drive North	Tachevah Drive to Alejo Road	2647	20800	10428
Palm Canyon Drive North SB	Alejo Road to Tahquitz Road	2621	14700	7297
Palm Canyon Drive South SB	Tanquitz Road to Ramon Road	2647	17900	8974
Palm Canyon Drive South SB	South of Ramon Road	750	17900	2543
Palm Canyon Drive South	Indian Canyon Drive to Mesquite Avenue	2117	28800	11547
Palm Canyon Drive South	Mesquite Avenue to East Palm Canyon Drive	2020	21800	8340
Palm Canyon Drive South	East Palm Canyon Drive to La Verne Way	3207	20100	12208
Palm Canyon Drive South	La Verne Way to Murray Canyon Drive	5075	20100	19320
Palm Canyon Drive South	South of Murray Canyon Drive	4000	7500	5682
Palm Canyon Drive East	Palm Canyon Drive South to Camino Real	1961	17100	6351
Palm Canyon Drive East	Sunrise Way to Farrell Drive	2681	38900	19752
Palm Canyon Drive East	Farrell Drive to Gene Autry Trail	8143	34400	53053
-	Gene Autry Trail to Golf Club Drive	2906	34700	19098
Palm Canyon Drive East/SR-1 Paseo Dorotea	Ramon Road to Mesquite Avenue	6836 2907	41200 2900	53342 1597
1 0360 0010160	Namon Noad to Mesquile Avenue	2301	2300	1391

General Plan Buildout Tra	Distance			
Facility	Location	(feet)	ADT	VMT/Day
Paseo El Mirador	Avenida Caballeros to Sunrise Way	2658	5400	2718
Racquet Club Road	Leonard Road to Palm Canyon Drive	1473	1300	363
Racquet Club Road	Palm Canyon Drive to Indian Canyon Drive	1813	7200	2472
Racquet Club Road	Indian Canyon Drive to Via Miraleste	1460	9400	2599
Racquet Club Road	Via Miraleste to Avenida Caballeros	1201	6800	1547
Racquet Club Road	Avenida Caballeros to Hermosa Drive	1309	5500	1364
Racquet Club Road	Hermosa Drive to Sunrise Way	1317	10700	2669
Racquet Club Road	Sunrise Way to Cerritos Drive	1338	14000	3548
Racquet Club Road	Cerritos Drive to Farrell Drive	1205	9600	2191
Ramon Road	Belardo Road to Palm Canyon Drive	338	12800	819
Ramon Road	Palm Canyon Drive to Indian Canyon Drive	367	19200	1335
Ramon Road	Indian Canyon Drive to Calle Encillia	522	19200	1898
Ramon Road	Calle Encillia to Calle El Segundo	610	12700	1467
Ramon Road	Calle El Segundo to Avenida Caballeros	1499	16000	4542
Ramon Road	Avenida Caballeros to Hermosa Drive	1317	26700	6660
Ramon Road	Hermosa Drive to Sunrise Way	1305	27400	6772
Ramon Road	Sunrise Way to Farrell Drive	3073	33400	19439
Ramon Road	Farrell Drive to Compadre Road	922	41200	7194
Ramon Road	Compadre Road to El Cielo Road	1312	38200	9492
Ramon Road	El Cielo Road to Paseo Dorotea	2711	44100	22643
Ramon Road	Paseo Dorotea to Vella Road	1355	44900	11523
Ramon Road	Vella Road to Gene Autry Trail	1375	65500	17057
Ramon Road Ramon Road	Gene Autry Tail to San Luis Rey Drive	1300 1300	58000 55300	14280
Ramon Road	San Luis Rey Drive to Crossley Road Crossley Road to Landau Boulevard	2605	55300 60200	13616 29701
San Luis Rey Drive	Ramon Road to Mesquite Avenue	2569	3400	1654
San Rafael Drive	Palm Canyon Drive to Indian Canyon Drive	3733	6600	4666
San Rafael Drive	Indian Canyon Drive to Avenida Caballeros	2647	4600	2306
San Rafael Drive	Avenida Caballeros to Sunrise Way	2632	7200	3589
Seven Lakes Drive	West of Gene Autry Trail	3898	2200	1624
Stevens Road	Rose Avenue to Via Monte Vista	1320	900	225
Stevens Road	Via Monte Vista to Palm Canyon Drive	2282	2400	1037
Stevens Road	Palm Canyon Drive to Indian Canyon Drive	365	1500	104
Sonora Road	Sunrise Way to Cerritos Drive	1362	4400	1135
Sonora Road	Cerritos Drive to Farrell Drive	1335	5000	1264
Sonora Road	Farrell Drive to Compadre Road	1193	4900	1107
Sonora Road	Compadre Road to El Cielo Road	1476	5800	1621
Sunny Dunes Road	Palm Canyon Drive to Sunrise Way	4970	3900	3671
Sunny Dunes Road	Compadre Road to El Cielo Road	1350	4700	1202
Sunny Dunes Road	El Cielo Road to Paseo Dorotea	2657	7400	3724
Sunny Dunes Road	Paseo Dorotea to Vella Road	1351	4600	1177
Sunny Dunes Road	Vella Road to Gene Autry Trail	1360	5300	1365
Sunny Dunes Road	Gene Autry Trail to Crossley Road	2615	11600	5745
Sunrise Parkway	SR-111 to Indian Canyon Drive	7700	8100	11813
Sunrise Parkway	East of Indian Canyon Drive	5400	20100	20557 12004
Sunrise Way	San Rafael Drive to Racquet Club Road	2652	23900	
Sunrise Way Sunrise Way	Racquet Club to Vista Chino Vista Chino to Tachevah Drive	2628 2644	17900 18900	8909 9464
Sunrise Way	Tachevah Drive to Alejo Road	2632	19500	9404 9720
Sunrise Way	Alejo Road to Tahquitz Road	2607	19300	9529
Sunrise Way	Tahquitz Road to Ramon Road	2651	19800	9941
Sunrise Way	Ramon Road to Mesquite Avenue	2630	29100	14495
Sunrise Way	Mesquite Avenue to East Palm Canyon Drive	2637	25300	12636
Tachevah Drive	Palm Canyon Drive to Indian Canyon Drive	364	6000	414
Tachevah Drive	Indian Canyon Drive to Avenida Caballeros	2644	6000	3005
Tachevah Drive	Avenida Caballeros to Sunrise Way	2619	6000	2976
Tachevah Drive	Sunrise Way to Farrell Drive	2355	5900	2632
Tahquitz Canyon Way	West of Belardo Road	619	4500	528
Tahquitz Canyon Way	Belardo Road to Palm Canyon Drive	362	8900	610
Tahquitz Canyon Way	Palm Canyon Drive to Indian Canyon Drive	382	10900	789
Tahquitz Canyon Way	Indian Canyon Drive to Calle El Segundo	1123	10900	2318

General Plan Buildout Tra				
	Leveller	Distance		
Facility	Location	(feet)	ADT	VMT/Day
Tahquitz Canyon Way	Calle El Segundo to Avenida Caballeros	1472	9800	2732
Tahquitz Canyon Way	Avenida Caballeros to Hermosa Drive	1339	15600	3956
Tahquitz Canyon Way	Hermosa Drive to Sunrise Way	1301	15600	3844
Tahquitz Canyon Way	Sunrise Way to Farrell Drive	3086	15600	9118
Tahquitz Canyon Way	Farrell Drive to El Cielo Road	2257	15600	6668
Tamarisk Road	Palm Canyon Drive to Indian Canyon Drive	348	1400	92
Tamarisk Road	Indian Canyon Drive to Via Miraleste	1324	1400	351
Tamarisk Road	Via Miraleste to Avenida Caballeros	1306	1800	445
Tamarisk Road	Avenida Caballeros to Sunrise Way	2635	1800	898
Tamarisk Road	Sunrise Way to Farrell Drive	3036	1800	1035
Toledo Avenue	Murray Canyon Drive to La Verne Way	4709	3500	3121
Tramview Road	West of Indian Canyon Drive	2729	2000	1034
Tram Way	West of Palm Canyon Drive	19968	13500	51055
Twin Palms Drive	South Palm Canyon Drive to Camino Real	1963	1200	446
Twin Palms Drive	Camino Real to Sunrise Way	3305	1600	1002
Vella Road	Ramon Road to Mesquite Avenue	2600	6100	3004
Verona Road	Farrell Drive to Volturno Road	1279	3400	824
Verona Road	Volturno Road to Whitewater Club Drive	1248	3300	780
Via Escuela	West of Palm Canyon Drive	2303	1400	611
Via Escuela	Palm Canyon Drive to Indian Canyon Drive	780	2100	310
Via Escuela	Indian Canyon Drive to Avenida Caballeros	2628	800	398
Via Escuela	Avenida Caballeros to Sunrise Way	2652	1200	603
Via Escuela	Sunrise Way to Farrell Drive	2642	4400	2202
Via Escuela	Farrell Drive to Volturno Road	1292	9500	2325
Via Escuela	Volturno Road to Whitewater Club Drive	1253	4800	1139
Via Escuela	Whitewater Club Drive to Gene Autry Trail	1578	8400	2510
Via Miraleste	Francis Drive to Racquet Club Road	1301	1600	394
Via Miraleste	Racquet Club Road to Vista Chino	2669	1400	708
Via Miraleste	Vista Chino to Tachevah Drive	2636	5700	2846
Via Miraleste	Tachevah Drive to Alejo Road	2633	1800	898
Via Monte Vista	Vista Chino to Stevens Road	553	1200	126
Via Monte Vista	Stevens Road to Crescent Drive	4014	1200	912
Vista Chino	West of Palm Canyon Drive	1314	2400	597
Vista Chino (SR-111)	Palm Canyon Drive to Indian Canyon Drive	349	30100	1990
Vista Chino (SR-111)	Indian Canyon Drive to Via Miraleste	1336	26000	6579
Vista Chino (SR-111)	Via Miraleste to Avenida Caballeros	1319	26600	6645
Vista Chino (SR-111)	Avenida Caballeros to Hermosa Drive	1330	26600	6700
Vista Chino (SR-111)	Hermosa Drive to Sunrise Way	1312	26600	6610
Vista Chino (SR-111)	Sunrise Way to Cerritos Drive	1319	29900	7469
Vista Chino (SR-111)	Cerritos Drive to Farrell Drive	1341	46200	11734
Vista Chino (SR-111)	Farrell Drive to Volturno Road	1289	51500	12573
Vista Chino (SR-111)	Volturno Road to Whitewater Club Drive	1250	56500	13376
Vista Chino (SR-111)	Whitewater Club Drive to Gene Autry Trail	1599	60700	18382
Vista Chino	East of Gene Autry Trail	14343	49900	135552
Volturno Road	Racquet Club Road to Vista Chino	2600	-3900 5000	2462
Waverly Drive	Gene Autry to Golf Club Drive / Crossley Driv	2902	4200	2308
Whitewater Club Drive	Racquet Club Road to Vista Chino	2764	5300	2300
		2104	0000	2114
	Tet			0 000 000

 Total VMT/Day
 2,320,962

 Total VMT/Year
 847,151,147

Sources:

- ADT (average daily traffic) from: City of Palm Springs. General Plan Update. May 25, 2007. Traffic Analysis.

Distance in feet measured using Google Earth by Michael Brandman Associates
 VMT/day = ADT multiplied by the distance

City of Palm Springs Greenhouse Gas Inventory Offroad Emissions

Prepared by Michael Brandman Associates

	1990	2000	2005	2008	2012	2020	2035
Population - Riverside County	1,170,413	1,545,387	1,883,735	2,078,601	2,354,017	2,904,848	3,805,340
Population - Palm Springs	40,144	42,805	45,877	47,019	49,103	53,271	61,086
Percent Palm Springs Population/Riverside	3%	3%	2%	2%	2%	2%	2%
OFFROAD2007 Output for Riverside County							
CO2 Exhaust (tons/day)	10.8	12.8	25.3	26.8	28.87	33.61	45.38
N2O Exhaust (tons/day)	0.000015	0.000013	0.0021	0.0021	0.0022	0.0028	0.0047
CH4 Exhaust (tons/day)	0.0031	0.0023	0.0099	0.0084	0.0073	0.0073	0.012
Total (MTCO2e/year)	3599	4256	8662	9148	9836	11467	15592
Emissions in Palm Springs (MTCO2e/year)	123	118	211	207	205	210	250

Notes:

The emissions in Riverside County were estimated using the California Air Resources Board's model, OFFROAD2007. The following classes of emissions were included: recreational equipment (off-road vehicles, all terrain vehicles), construction and mining equipment, generators, industrial equipment, lawn and garden equipment, light commercial equipment, other portable equipment, and transport refrigeration units. Note that emissions from airports were not included as the emissions are being estimated separately. Emissions from pleasure craft (boats), dredging, logging equipment, oil drilling, military tactical support equipment, agricultural equipment, and railyard operations were not included, as it is not believed that there are substantial emissions from those sources within the City.

Emissions in Palm Springs were estimated by multiplying the emissions in Riverside County by the percent of the population residing in Palm Springs (ranges between 2% and 3%).

Prepared by Michael Brandman Associates

Data Provided by City (therms) - Entered into the CACP Model

Cogeneration Plant	1989	2000	2005	2008
Municipal Cogen	802,034	1,370,678	1,132,726	1,083,073
Sunrise Plaza Cogen	447,263	512,837	580,061	561,041
Total	1,249,297	1,883,515	1,712,787	1,644,114

Assumption: Future years have same natural gas usage as in 2008

Cogeneration Plant	2012	2020	2035
Municipal Cogen	1,083,073	1,083,073	1,083,073
Sunrise Plaza Cogen	561,041	561,041	561,041
Total	1,644,114	1,644,114	1,644,114

"Data provided by City" provided by Jan Anderson, Facilities Maintenance Manager, via email October 18, 2010.

Future usage is unknown at this time; therefore, 2008 usage is applied for future years.

City of Palm Springs Greenhouse Gas Inventory

Natural Gas

Prepared by Michael Brandman Associates

Natural Gas Data Provided by Southern California Gas Company (Annual Therms)

Year	2005	2006	2007	2008
Industrial/commercial	9,373,947	7,886,344	8,892,388	7,193,843
Single family residential	8,787,949	8,410,847	8,642,052	8,962,950
Multi family residential	4,426,810	4,236,761	4,384,842	4,300,209
Subtotal residential	22,588,706	20,533,952	21,919,282	20,457,002
Therms per unit				
Year	2005	2008		
Households	32068	33558		
Therm per household	412	395		
Acres of commercial/industrial	2623			
Therm per acre	3574			

Interpolation based on Therms per unit for 2005

Year	1990	2000	2005	2008	2012	2020	2035	21
Households	30490	30822	32068	(uses 2008)	34334	35886	38796	514
Residential therms per year	12,564,488	12,701,300	13,214,759	20,457,002	14,148,545	14,788,102	15,987,325	
			0000	0000	0000	0007	0550	
Acres of commercial/industrial			2623 (uses 2008)	2839	3087	3550	55
Commercial/Ind. Therms per year			9,373,947	7,193,843	10,147,344	11,031,227	12,688,506	
polation based on Therms per capita	a for 2005							
Population	40144	42805	45877					
Commercial/Ind. Therms/capita			204.33					
Commercial/Ind. Therms/year	8,202,536	8,746,252						

Natural Gas Sources:

- Natural gas data provided by Southern California Gas Company: Personal communication with Southern California Gas Company, September 30, 2010 and October 19, 2010.

- Acres of commercial/industrial for 2005 from the 2007 General Plan EIR, Table 5.9-1. Note that the subtotals in Table 5.9-1 are incorrect; therefore, the totals represent the sum of the categories.

- Interpolation for residential natural gas usage from the therms per household for 2005. (With the exception of 2008, which uses actual values.) Interpolation for commercial/industrial for the future is based on therms per acre. Interpolation for commercial/industrial for 1990 and 2000 use therms per capita for 2005.

- Note: Emissions are estimated using the CACP software, with the default fuel set emission factors. Values highlighted in green are the values entered into the software.

City of Palm Springs Greenhouse Gas Inventory Electricity

Prepared by Michael Brandman Associates

Southern California Edison Data - Entire City of Palm Springs (kWh)

		, , ,			
Rate Group	<u>1990</u>	<u>2000</u>	<u>2005</u>	<u>2008</u>	<u>2008 (%)</u>
AG TOU		32,778,048	35,688,494	37,714,762	6%
DOMESTIC		286,386,047	293,435,747	309,854,443	46%
GS-1		48,752,905	50,920,334	53,263,907	8%
GS-2		143,310,811	121,808,274	123,739,462	18%
TOU-8		117,546,429	123,993,582	96,295,193	14%
STREET LIGHTING				2,353,589	0.3%
TOU-GS				49,727,200	7%
Total	559,512,298	628,774,240	625,846,431	672,948,556	100%

Southern California Edison Data - Municipal Accounts (kWh)

	<u>2000</u>	<u>2005</u>	<u>2008</u>
Total	2,474,014	6,251,569	7,631,022

Estimations: Electricity Use (kWh)				
Type	<u>1990***</u>	<u>2000</u>	2005	2008 Rate Group
Residential	256,613,385	286,386,047	293,435,747	309,854,443 DOMESTIC
Commercial/Industrial	267,521,529	307,136,131	290,470,621	315,394,740 GS-1, GS-2, TOU-8, TOU-GS*
Municipal	2,193,819	2,474,014	6,251,569	7,631,022 GS-1, GS-2, TOU-8, TOU-GS*
Water pumping	31,234,384	32,778,048	35,688,494	37,714,762 AG TOU
Street lighting**	1,949,181	2,199,093	2,188,853	2,353,589 STREET LIGHTING
Total	559,512,298	630,973,333	628,035,284	672,948,556

* Note that municipal kWh was subtracted from the commercial/industrial rate groups

** Streetlight data was not included in the data provided for 1990, 2000, and 2005; therefore it was estimated as 0.3% of total

*** 1990 categories were estimated using 2008 categories, with exception of municipal, which was estimated by taking the percent municipal of the total in the year 2000 and applying it to the total kWh in 1990.

Electricity Use (MWh)

<u>Type</u>	<u>1990</u>	<u>2000</u>	<u>2005</u>	<u>2008</u>
Residential	256,613	286,386	293,436	309,854
Commercial/Industrial	267,522	307,136	290,471	315,395
Municipal	2,194	2,474	6,252	7,631
Water pumping	31,234	32,778	35,688	37,715
Street lighting	1,949	2,199	2,189	2,354
Total	559,512	630,973	628,035	672,949
Total/capita:	13.9	14.7	13.7	14.3
Residential MWh/housedhold:	8.4	9.3	9.2	9.2

Emission Factors (pounds/MWh)

Year	<u>CO2</u>	<u>N2O</u>	<u>CH4</u>	Source	
1996	834.960			eGRID2002	
2000	650.509			eGRID2002	
2005	634.410	0.0108	0.0072	eGRID2007	

Business as Usual Emissions (MTCO2e/year)

Total	212,792	187,179	181,721	194,717
Street lighting	741	652	633	681
Water pumping	11,879	9,724	10,326	10,913
Municipal	834	734	1,809	2,208
Commercial/Industrial	101,743	91,112	84,047	91,259
Residential	97,594	84,957	84,905	89,656
Туре	1990	<u>2000</u>	<u>2005</u>	<u>2008</u>

City of Palm Springs Greenhouse Gas Inventory

Electricity: Community (continued)

Page 2

Forecasts: Business as Usual

Assumptions

Assume household growth = increase in residential electricity

Use emission factors from 2005

Assume municipal, water pumping, and street lighting growth = increase in population growth

		General Plan	Percent
Land Use	Acres (2007)	Buildout Acres	Increase
Commercial	696	1,314	47%
Industrial and Office	1,458	3,783	61%
Public/Institutional	469	463	-1%
Total	2,623	5,560	53%

Notes: Existing acreage (2007) is from the General Plan EIR, Table 5.9-1. Note that the subtotals in Table 5.9-1 are incorrect; therefore, the totals represent the sum of the categories. General Plan Buildout acres is from the 2007 General Plan, Table 2-2.

Percent increase in commercial/industrial acreage equal to increase in emissions

		2008	2012	2020	2035	2100
		0%	2%	7%	16%	53%
Emissions (MTCO2e)		<u>2012</u>	<u>2020</u>	<u>2035</u>		
	Residential	91,682	95,472	101,761		
	Commercial/Industrial	93,362	97,568	105,454		
	Municipal	2,302	2,467	2,716		
	Water pumping	11,376	12,193	13,426		
	Street lighting	710	761	838		
	Total	199,432	208,461	224,195		

Notes for Electricity:

eGRID2007: http://www.epa.gov/cleanenergy/energy-resources/egrid/index.html eGRID2002 Archive. http://www.epa.gov/cleanenergy/energy-resources/egrid/archive.html Note that the emission factors are from Southern California Edison, average, EGRDEGCL The N2O and CH4 emission factors for 1990 and 2000 are from 2005

The business as usual case uses 2005 emission factors.

The 1990 emissions use the 1996 emission factors (because it is the earliest available)

Description of Southern California Edison Rate Groups:

Domestic (Domestic Service): For all residential service including lighting, heating, cooking, and power or combination thereof in a singlefamily accommodation; also to domestic farm service when supplied through the farm operator's domestic meter.

GS-1 (General Service Non-Demand): Includes single- and three-phase general service including lighting and power, except that the customer whose monthly maximum demand, in the opinion of SCE, is expected to exceed 20 kW or has exceeded 20 kW in any three months during the preceding 12 months.

GS-2 (General Service - Demand): As of August 2006, includes single- and three-phase general service including lighting and power customers whose monthly maximum demand registers, or in the opinion of SCE is expected to register, above 20 kW and below 200 kW. In 2005, this rate group included customers with monthly maximum demands above 20 kW through 500 kW.

TOU-GS-3 (Time-Of-Use - General Service - Demand Metered): As of August 2006, includes single- and three-phase general service including lighting and power customers whose monthly maximum demand registers, or in the opinion of SCE is expected to register, above 200 kW through 500 kW. This rate group did not exist in 2005 and these customers were included in the GS-2 rate group. TOU-8 (Time-Of-Use - General Service – Large): Includes general service, lighting and power, except agricultural water pumping accounts. This Schedule is mandatory for all customers whose monthly maximum demand, in the opinion of SCE, is expected to exceed

500 kW or has exceeded 500 kW in any three months during the preceding 12 months.

AG TOU (Also includes PA-1 and PA-2): Includes accounts where SCE determines that 70% or more of the customer's electrical usage is for water pumping used for agricultural purposes, general water, or sewerage pumping.

STREET LIGHTING (Lighting - Street and Highway Company-Owned System): Includes service for the lighting of streets, highways, and publicly-owned and publicly operated automobile parking lots which are open to the general public where SCE owns and maintains the street lighting equipment and associated facilities included under this schedule.

Southern California Edison Data - Municipal Accounts (kWh), not including streetlights

	unicipal Accounts (RMI); not melau			0000
		<u>2000</u>	<u>2005</u>	<u>2008</u>
	Total electricity	2,474,014	6,188,391	7,631,022
Location Analysis (KM/b)				
Location Analysis (kWh)		0000	0005	0000
Location	Address	<u>2000</u>	<u>2005</u>	2008
Historical Society	221 S. Palm Canyon Dr Mus	13,956	10,590	11,052
Village Green Heritage Center		37,452	28,974	34,512
Village Green Heritage Center	223 S. Palm Canyon Dr #A	42,132	61,523	54,697
Frances Stevens Park	550 N. Palm Canyon Drive	54,160	28,360	35,240
Ruth Hardy Park	700 Tamarisk Road (79 Miraleste-Ta	57,300	38,980	57,980
Victoria Park	590 E. Racquet Club Rd	92,160	77,760	83,280
Desert Highland Park	482 W. Tramview Road	110,550	120,840	104,430
DeMuth Park	4365 - 4375 Mesquite Ave	12,960	63,178	81,367
Sunrise, Stadium, Library	407 S. Cerritos, 2000 E Ramon Rd	369,336	215,810	298,311
Plaza Theatre	128 S. Palm Canyon	423,900	306,439	300,536
Wellness Park		420,000 NA	000,400 NA	NA
Dog Park		NA	NA	NA
Baristo		NA	NA	NA
Ballslo		INA	NA	INA
Total		1,213,906	952,454	1,061,405
Emission Factors (pounds/MWh)				
	Carbon Dioxide:	650.509	634.4	
	Methane:	000.000	0.0072	
	Nitrous Oxide:		0.0108	
	Nicious Oxide.		0.0100	
Emissions (MTCO2e)				
Village Green, Historical		28	29	29
Frances Stevens Park		18	9	11
Ruth Hardy Park		19	12	18
Victoria Park		30	25	27
Desert Highland Park		36	39	33
DeMuth Park		4	20	26
Sunrise, Stadium, Library		121	20 69	20 95
Plaza Theatre				95 96
		139	98 201	
Total		394	301	336

Note: DeMuth is lower in 2000 because it only includes the tennis portion of the electricity use; a "snack bar" was included in 2005 and 2008

NA = not available

Emission factors are from eGRID (see "Electricity" spreadsheet)

The same emission factors for 2005 were used for 2008; 2005 methane and nitrous oxide used for all years

Vehicle Miles Traveled Summary (2010) Employee Commute - City of Palm Springs Prepared by Michael Brandman Associates

Drive alone	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Gasoline passenger car Diesel passenger car	66,938	74,738 -	84,754	79,678 -	27,820 -	17,590 -	7,996 -
Gasoline SUV, pickup, van, other	33,682	46,510	49,232	47,966	22,262	6,608	3,866
Diesel SUV, pickup, van, other	10,392	10,008	10,108	10,008	10,088	5,632	5,632
Hybrid	-	-	-	-	-	-	-
Zero emission vehicle Low emission vehicle	- 1,824	- 1,824	- 1,824	- 1,824	-	-	-
Motorcycle/scooter	3,560	- 1,024	1,024	1,024	-		-
Biodiesel vehicle	-	-	-	-	-	-	-
Total	116,396	133,080	147,342	140,700	60,170	29,830	17,494
Carpool - 2 in vehicle							
(Values adjusted by dividing by 2)	0.400	0 740	0.000	0 740	000		
Gasoline passenger car Diesel passenger car	3,100 -	6,742	3,892	2,742	392	-	-
Gasoline SUV, pickup, van, other	1,700	2,428	- 1,700	- 1,700	-		-
Diesel SUV, pickup, van, other	-	-	-	-	-	-	-
Hybrid	-	-	-	-	-	-	-
Zero emission vehicle	-	-	-	-	-	-	-
Low emission vehicle	-	-	-	-	-	-	-
Motorcycle/scooter Biodiesel vehicle	-	-	-	-	-	-	-
Total	4,800	9,170	5,592	4,442	392	-	-
Carpool - 3 in vehicle							
(Values adjusted by dividing by 3)							
Gasoline passenger car	-	96	663	663	663	-	-
Diesel passenger car	-	-	-	-	-	-	-
Gasoline SUV, pickup, van, other Diesel SUV, pickup, van, other	363	363	363	363	96	-	136 -
Hybrid	-	-	-	-	-		-
Zero emission vehicle	-	-	-	-	-	-	-
Low emission vehicle	-	-	-	-	-	-	-
Motorcycle/scooter	-	-	-	-	-	-	-
Biodiesel vehicle Total	- 363	- 459	- 1,025	- 1,025	- 759	-	- 136
	303	409	1,025	1,025	759	-	150
Carpool - 4 in vehicle							
(Values adjusted by dividing by 4) Gasoline passenger car	-		-				
Diesel passenger car	-	-	-	-	-	-	-
Gasoline SUV, pickup, van, other	100	-	100	-	-	-	-
Diesel SUV, pickup, van, other	-	-	-	-	-	-	-
Hybrid	-	-	-	-	-	-	-
Zero emission vehicle Low emission vehicle	-	-	-	-	-	-	-
Motorcycle/scooter	_	-	-	-	-	-	-
Biodiesel vehicle	-	-	-	-	-	-	-
Total	100	-	100	-	-	-	-
Carpool - 5 in vehicle							
(Values adjusted by dividing by 5)							
Gasoline passenger car	-	-	-	-	-	-	-
Diesel passenger car Gasoline SUV, pickup, van, other	-	-	-	-	-	-	-
Diesel SUV, pickup, van, other	-	-	-	-	-	-	-
Hybrid	-	-	-	-	-	-	-
Zero emission vehicle	-	-	-	-	-	-	-
Low emission vehicle	-	-	-	-	-	-	-
Motorcycle/scooter	-	-	-	-	-	-	-
Biodiesel vehicle Total	-	-	-	-	-	-	-
i otai	-	-	-	-	-	-	-

Motorcycle	Monday	Tuesday	Wednesday		Friday	Saturday	Sunday	
Gasoline passenger car	-	-	-	4,800	-	-	-	
Diesel passenger car	-	-	-	-	-	-	-	
Gasoline SUV, pickup, van, other	-	-	-	-	1,666	-	-	
Diesel SUV, pickup, van, other	-	-	480	-	-	-	-	
Hybrid	-	-	-	-	-	-	-	
Zero emission vehicle	-	-	-	-	-	-	-	
Low emission vehicle	-	-	-	-	-	-	-	
Motorcycle/scooter	2,924	6,484	5,060	5,260	-	-	-	
Biodiesel vehicle	-	-	-	-	-	-	-	
Total	2,924	6,484	5,540	10,060	1,666	-	-	
Grand Total	124,583	149,193	159,599	156,227	62,987	29,830	17,630	
2010 Survey Results Summary (Miles per year))							Total
Gasoline passenger car	70,038	81,576	89,309	87,883	28,875	17,590	7,996	383,266
Diesel passenger car	-	-	-	-	-	-	-	-
Gasoline SUV, pickup, van, other	35,845	49,301	51,395	50,029	24,024	6,608	4,002	221,203
Diesel SUV, pickup, van, other	10,392	10,008	10,588	10,008	10,088	5,632	5,632	62,348
Hybrid	-	-	-	-	-	-	-	-
Zero emission vehicle	-	-	-	-	-	-	-	-
Low emission vehicle	1,824	1,824	1,824	1,824	-	-	-	7,296
Motorcycle/scooter	6,484	6,484	6,484	6,484	-	-	-	25,936
Biodiesel vehicle	-	-	-	-	-	-	-	-
Total	124,583	149,193	159,599	156,227	62,987	29,830	17,630	700,049
Number of Completed Surveys		141						
Average commute (miles per year per employe	e)	4,965						

City of Palm Springs - Municipal Government Employees

FTE employees		1990 519	2000 458	2005 450	2008 485	2010 390
	2010 Average					
Employee Commute (Miles per year)	per employee	1990	2000	2005	2008	2010-2035
Gasoline passenger car	2,718	1,437,601	1,244,935	1,223,189	1,318,326	1,060,097
Diesel passenger car	-	-	-	-	-	-
Gasoline SUV, pickup, van, other	1,569	814,214	718,516	705,966	760,874	611,837
Diesel SUV, pickup, van, other	442	229,494	202,520	198,983	214,459	172,452
Hybrid	-	-	-	-	-	-
Zero emission vehicle	-	-	-	-	-	-
Low emission vehicle	52	-	23,699	23,285	25,096	20,180
Motorcycle/scooter	184	95,467	84,246	82,774	89,212	71,738
Biodiesel vehicle	-	-	-	-	-	-
Total	4,965	2,576,775	2,273,917	2,234,198	2,407,969	1,936,305

Notes:

The City of Palm Springs employee survey was conducted between August 25 and October 5, 2010. There were 141 completed surveys out of 390 employees, or 36 percent. It was assumed that in 1990 there were no low emission vehicles; the miles were added to gasoline passenger cars.

The average commute from the survey results was applied to the full number of employees.

The CACP model does not have a category for motorcycles, so those miles were applied in the gasoline passenger car.

The CACP model does not have a category for low emission vehicles, so those miles in 2000 were applied to the passenger car model year 2000; in 2005 and later years, they were applied to the 2005 model year.

City of Palm Springs Greenhouse Gas Inventory Wastewater Treatment Plant

Prepared by Michael Brandman Associates

Assumptions	
Per capita flow contribution	138 gpcd (gallons per capita day)
Biochemical Oxygen Demand (BOD)	11400 pounds per day (average for 2004-2006)
Wastewater influent flow	6.37 million gallons per day (average for 2004-2006)
BOD per million gallons	0.00179 pounds BOD per gallon of wastewater influent flow

Stationary Emissions from Incomplete Combustion of Digester Gas

Equation 10.1 Stationary CH₄ from Incomplete Combustion of Digester Gas (site-specific digester gas data)							
Annual CH₄ e	Annual CH₄ emissions (metric tons CO₂e) =						
(Digester Gas	x F _{CH4} x ρ(CH ₄) x (1-DE) x 0.0283 x 365.25 x 10 ⁻⁶) x GWP						

Where:

Term		Description				Value			
Digester Gas	=	measured standard cubic feet of d	ligester gas	produced p	er day [ft³/da	ay] useri	nput		
F CH₄	=	measured fraction of CH ₄ in bioga	s			user i	nput		
p(CH₄)	=	density of methane at standard co	nditions [g/	m³]		662.0	0		
DE	=	CH₄ Destruction Efficiency				.99			
0.0283	=	conversion from ft ³ to m ³ [m ³ /ft ³]			0.028	3			
365.25 = conversion factor [day/year]		conversion factor [day/year]				365.2	5		
10-6	=	conversion from g to metric ton [m	netric ton/g]			10 ⁻⁶			
GWP	=	Global Warming Potential				21			
Year Population			<u>1990</u> 40144	<u>2000</u> 42805	<u>2005</u> 45877	<u>2008</u> 47019	<u>2012</u> 49103	<u>2020</u> 53271	<u>2035</u> 61086
	dig	jester gas per day	77816	74092	50268	68244	71269	77318	88661
SCF gas per	SCF gas per day per person			1.73	1.10	1.45	1.45	1.45	1.45
Fraction of C	Fraction of CH4 in biogas			0.65	0.65	0.65	0.65	0.65	0.65
Business as	Usu	al Emissions (MTCO2e)	727	692	470	637	666	722	828

Process Emissions from Wastewater Treatment Lagoons

	Process CH ₄ from Anaerobic and Facultative Wastewater Treatment Lagoons						
	Equation 10.3 (site-specific BOD ₅ load, F removed values)						
Annual CH ₄ emissions (metric tons CO ₂ e) =							
	$(BOD_5 \text{ load } x (1-F_P))$	x Bo x MCF _{anaerobic} x 365.25 x 10 ⁻³) x GWP					

Where:

Term		Description				Value			
BOD_5 load	=	amount of BOD ₅ produced per day process) [kg BOD ₅ /day]	y (influent to w	vastewater	treatment	user input	_		
F _P	=	fraction of BOD5 removed in prima	ary treatment,	if present		user input			
Во	=	maximum CH ₄ -producing capacity BOD ₅ removed]	for domestic	wastewate	r [kg CH₄/kg	0.6			
MCF anaerobic	=	CH ₄ correction factor for anaerobi	c systems			0.8			
365.25	=	conversion factor [day/year]				365.25			
10 ⁻³	=	conversion from kg to metric ton [metric ton/kg]			10 ⁻³			
GWP	=	Global Warming Potential				21			
Year			<u>1990</u>	<u>2000</u>	<u>2005</u>	<u>2008</u>	<u>2012</u>	<u>2020</u>	<u>2035</u>
Population			40144	42805	45877	47019	49103	53271	61086
Biochemical	Ox	ygen Demand (BOD)	4497	4795	5171.04	5267	5501	5968	6843
Fraction of E	BOE) removed	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Business as Usual Emissions (MTCO2e)12418Fraction of BOD removed (new primaries)0.25			12418	13241	14278.7	14545	15189	16479	18896
			0.25	0.25	0.25	0.25	0.25	0.35	
Emissions w	/ith	Reductions (MTCO2e)	12418	13241	14279	14545	15189	16479	16377

Wastewater Treatment Plant

Process Emissions from Plant without Nitrification/Denitrification

 Equation 10.8
 Process N2O Emissions from WWTP without Nitrification/Denitrification

 Annual N2O emissions (metric tons CO2e) =

 ((P_{total} x F_{ind-com}) x EF w/o nit/denit x 10⁻⁶) x GWP

Where:

Term		Description	Value						
P _{total}	=	population that is served by the industrial discharge, if applicabl	user input						
F _{ind-com}	=	factor for industrial and comments	1.25						
EF w/o nit/denit	=	emission factor for a WWTP wit [q N ₂ O/person/year]	3.2						
10 ⁻⁶	=	conversion from g to metric ton	10 ⁻⁶						
GWP	=	Global Warming Potential	310						
Year		<u>1</u> 5	990	2000	2005	2008	2012	2020	2035
Population	40	144	42805	45877	47019	49103	53271	61086	
N2O emissions (I	ИТС	CO2e)	50	53	57	58	61	66	76

Fugitive Emissions from Septic Systems

Equation 10.6	Fugitive CH₄ from Septic Systems (default BOD₅ load)
Annual CH₄ emis	ssions (metric tons CO ₂ e) =
(P x BOD ₅ load)	x Bo x MCF _{septic} x 365.25 x 10 ⁻³) x GWP

Where:

Term		Description	Value								
Р	=	population served by septi	user								
BOD ₅ load	=	amount of BOD₅ produced	input 0.090								
Во	=	maximum CH₄-producing (CH₄/kg BOD₅ removed]	0.6								
MCF _{septic}	=		$CH_4/kg BOD_5$ removed] CH ₄ correction factor for septic systems								
365.25 10 ⁻³	= =	conversion factor [day/yea conversion from kg to met	365.25 10 ⁻³								
GWP	=	Global Warming Potential					21				
	Population served by septic systems Emissions (MTCO2e)				<u>2005</u> 200 41	<u>2008</u> 200 41	<u>2012</u> 200 41	<u>2020</u> 200 41	<u>2035</u> 200 41		
siness as Usual E	ess as Usual Emissions			2000	2005	2008	<u>2012</u>	2020	2035		
Stationary - D	Stationary - Digester Gas			692	470	637	666	722	828		
Treatment La	Treatment Lagoons Nitrification/Denitrification Septic Systems			13241	14279	14545	15189	16479	18896		
				53	57	58	61	66	76		
				41	41	41	41	41	41		
Total			13236	14028	14847	15282	15957	17308	19841		
Plant Upgrades Stationary - E Treatment La Nitrification/D Septic Syster	Dige Igoc Denit	ster Gas ons							2035 828 16377 76 41		
Total		13236	14028	14847	15282	15957	17308	17322			
Percent redu	า	0%	0%	0%	0%	0%	0%	13%			

Notes for Wastewater Treatment Plant:

Equations and fraction of CH4 in gas are from the Local Government Operations Protocol, version 1.1, May 2010, prepared by the California Air Resources Board, California Climate Action Registry, ICLEI, and the Climate Registry.

Assumptions are from the City of Palm Springs Wastewater Treatment Plant Capital Rehabilitation and Repair Plan, dated February 2010, except for the following:

- Fraction of BOD removed, average standard cubic feet (SCF) of digester gas per day, and number of septic tanks from Marcus Fuller, Assistant City Engineer, personal communication 9/16/10.

To project stationary emissions from incomplete combustion of digester gas, the gas per day per person for 2008 was used to estimate the gas produced for future years.

The improvements to the treatment plant are not funded at this time; therefore, year 2035 was assumed for implementation of the improvements, pursuant to personal communication with Marcus Fuller, Assistant City Engineer, 10/7/10.

City of Palm Springs Greenhouse Gas Inventory

Waste Generated - Community

Prepared by Michael Brandman Associates

Year	1990	1995	1999	2000	2003	2004	2005	2006	2007	2008	2009	2012	2020	2035
Population - Palm Springs	40144	41058	42392	42805	44502	44935	45877	46629	46796	47019	47601	49103	53271	61086
Waste generated (tons)		67473	78267	85539	86004	87676	95160	92333	82931	66396	56636			
Waste per person (tons)		1.64	1.85	2.00	1.93	1.95	2.07	1.98	1.77	1.41	1.19			
Waste Projections (tons)														
Based on 1995 waste per person	65971													
Based on 2005 waste per person								96720	97066	97529	98736	101851	110496	126707
Based on 2008 waste per person										66396	67218	69339	75224	86260
Percent Waste (%)														
Paper products	30.2	30.2	30.2	27.9	21.0	20.3	19.5	18.8	18.0	17.3	17.3	17.3	17.3	17.3
Food waste	15.7	15.7	15.7	15.4	14.6	14.8	15.0	15.1	15.3	15.5	15.5	15.5	15.5	15.5
Plant debris	10.3	10.3	10.3	9.5	6.9	7.0	7.0	7.1	7.1	7.2	7.2	7.2	7.2	7.2
Wood or textiles	15.0	15.0	15.0	16.3	20.2	21.3	22.4	23.6	24.7	25.8	25.8	25.8	25.8	25.8
All other waste	28.8	28.8	28.8	30.9	37.3	36.7	36.1	35.4	34.8	34.2	34.2	34.2	34.2	34.2
CACP Inputs	1990	2000	2005	2008	2012	2020	2035							
Business as usual waste (tons)	65971	85539	95160	66396	69339	75224	86260							

Sources:

- Population for 1990 - 2000 from: State of California, Department of Finance. E-8 Historical Population and Housing Estimates for Cities, Counties and the State, 1990-2000. Sacramento, California, August 2007. www.dof.ca.gov/research/demographic/ reports/estimates/e-8/

- Population for 2003-2007 from: State of California, Department of Finance. E-5 Population and Housing Estimates for Cities, Counties and the State, 2001-2009, with 2000 Benchmark. May 2009. www.dof.ca.gov/research/demographic /reports/estimates/e-5/2009/

- Note that "plant debris" contains the categories leaves and grass, prunings and trimmings, brances and stumps, and manures. "Wood or textiles" contains the categories textiles, carpet, composite organic, lumber, and gypsum board.

- Percent waste for 2008 is from the California Integrated Waste Management Board, California 2007 Statewide Waste Characterization Study. Produced under contract by: Cascadia Consulting Group. August 2009. www.calrecycle.ca.gov/wastechar/WasteStudies.htm.

- Percent waste for 2003 is from the California Integrated Waste Management Board, California 2003 Statewide Waste Characterization Study. Produced under contract by: Cascadia Consulting Group. 2004 www.calrecycle.ca.gov/wastechar/WasteStudies.htm.

- Percent waste for 1999 is from the California Integrated Waste Management Board, California 1999 Statewide Waste Characterization Study. Produced under contract by: Cascadia Consulting Group. 2004 www.calrecycle.ca.gov/wastechar/WasteStudies.htm.

- Percent waste for 2000 interpolated from 1999 and 2003 data

- Percent waste for 2004 through 2007 interpolated from 2003 and 2008 data

- Percent waste for 1990 and 1995 is from 1999 data

- Percent waste for 2009 and later years is from 2008 data

- Waste generated is from: California Integrated Waste Management Board www.calrecycle.ca.gov/LGcentral/Reports/DRS/Destination/JurDspFa.aspx

- Forecasts for the business as usual scenario for 2008 - 2035 are from the waste per capita for 2008

City of Palm Springs Greenhouse Gas Inventory Municipal/Government: Ozone Depleting Substance Substitutes

Prepared by Michael Brandman Associates

Annual leakage of refrigerant is 90 to 120 pounds per year The refrigerant used was R22, which is also known as HCFC-22 The CACP model does not have an entry for this refrigerant; therefore, the emissions are calculated herein.

			Global	
	Leakage	Leakage	warming	Emissions
Refrigerant	(pounds/year)	(tons/year)	potential	(MTCO2e/year)
R-22	120	0.06	1810	99

Sources:

The annual leakage is from the City of Palm Springs, Jan Anderson, Email, October 18, 2010.

The global warming potential is from: Intergovernmental Panel on Climate Change, 2007a. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, Website: www.ipcc.ch/ipccreports/ar4-wg1.htm, Accessed July 1, 2010

City of Palm Springs Greenhouse Gas Inventory

Ozone Depleting Substance Substitutes

Prepared by Michael Brandman Associates

Business as Usual	1990	2000	2005	2008	2012	2020	2035
ODSS emissions in California (MMTCO2e)	0.036	8.55	12.41	13.89	ND	45.0	ND
Population in California (people)	29,758,213	33,873,086	36,676,931	37,883,992	39,967,969	44,135,923	51,753,503
ODSS emissions (MTCO2e / person)	0.001	0.25	0.34	0.37	0.58	1.02	ND
Population in Palm Springs (people)	40,144	42,805	45,877	47,019	49,103	53,271	61,086
Emissions in Palm Springs (MTCO2e)	49	10,805	15,523	17,239	28,690	54,314	62,282

Abbreviations:

ODS = ozone depleting substance substitutes; ARB = California Air Resources Board; ND = no data

Notes:

- The ARB estimated emissions from ODS substitutes by apportioning the National emissions on the basis of population, as shown in: California Air Resources Board. May 2009. California's 1990-2004 Greenhouse Gas Emissions Inventory and 1990 Emissions Level Technical Support Document. www.arb.ca.gov/cc/inventory/doc/methods_v1/ghg_inventory_technical_support_document.pdf, Accessed June 1, 2010.

- ODS substitutes emissions in California for 1990 from: California Air Resources Board. California Greenhouse Gas Inventory by sector and activity. www.arb.ca.gov/cc/inventory/archive/tables/ghg_inventory_sector_90-04_all_2007-11-19.pdf, Last updated 11/19/07. Accessed September 7, 2010.

- ODS substitutes emissions in California for 2000, 2005, and 2008 from: California Air Resources Board. May 12, 2010. California Greenhouse Gas Inventory for 2000-2008 – by Category as Defined in the Scoping Plan. www.arb.ca.gov/cc/inventory/data/tables/ghg_inventory_scopingplan_00-08_2010-05-12.pdf, Accessed September 7, 2010.

- ODS substitutes emissions in California for 2020 from: California Air Resources Board. December 2008. (Abbreviated as "ARB 2020 Forecast.") Climate Change Scoping Plan Appendices, Volume 1: Supporting Documents and Measure Detail, Appendix F. Website: www.arb.ca.gov/cc/scopingplan/document/appendices_volume1.pdf and www.arb.ca.gov/cc/inventory/data/forecast.htm (Inventory Summary for Scoping Plan), Accessed September 7, 2010.

- Emission projections for Palm Springs for 2035 are based on the per capita emissions in 2020.

- Per capita ODS substitutes emissions for 2012 interpolated from 2008 and 2020 data.

- The compliance scenario is based on a reduction from the Management of High Global Warming Potential Refrigerants for Stationary Sources in the California Code of Regulations. This regulation is anticipated to reduce approximately 8.6 MMTCO2e in California by 2020. Source: California Air Resources Board. 2009. Public Hearing Notice and Related Material. Appendix B, California Facilities and Greenhouse Gas Emissions Inventory – High-Global Warming Potential Stationary Source Refrigerant Management Program. October 23, 2009. www.arb.ca.gov/regact/2009/gwprmp09/refappb.pdf, Accessed September 7, 2010. Note that the regulation is to go into effect on January 1, 2011. However, registration for small refrigeration equipment is not due until March 1, 2016 and registration for medium refrigeration is not due until 2014. Therefore, reductions in 2012 do not represent the full potential of emissions reductions.

City of Palm Springs Greenhouse Gas Inventory Palm Springs Airport

Prepared by Michael Brandman Associates

TOL Data Provided b			0005	0000	0040	0040	0000	0000
Year TOL	1990 110,870	2000 96,103	2005 92,853	2008 72,876	2013 77,932	2018 85,168	2023 95,420	2028 108,875
TOL	110,070	90,103	92,000	12,010	11,952	05,100	95,420	100,075
Airport Passenger Tra	affic (approxii	mate)						
Year	1990	2000	2005	2008				
Passengers	860,000	1,280,000	1,400,000	1,490,000				
TOL Interpolation Cal	lculations							
Year	2008	2012	2013	2018	2020	2023		
TOL	72,876	76,921	77,932	85,168	89,269	95,420		
TOL Summary								
Year	1990	2000	2005	2008	2012	2020	2035	
TOL	110,870	96,103	92,853	72,876	76,921	89,269	108,875	
Fuel Usage Provided	by Palm Spr	inas Airport						
Year	, ,	2003	2005	2008				
Unleaded	gallons	6,057	8,106	8,855				
Diesel	gallons	1,968	1,425	1,590				
CNG	gallons	·	·	2,134				
Total	0	8,025	9,531	12,578				
Fuel Usage Calculatio	ons	Gallons _I	per TOL		Gallons/pa	assenger		
Year		2005	2008		2005	2008		
Unleaded		0.087	0.122		0.0058	0.0059		
Diesel		0.015	0.022		0.0010	0.0011		
CNG		0.000	0.029		-	0.0014		
Fuel Usage Forecasts	s Based on 2	008 aallons p	er TOL (Busi	ness as Usua	a/)			
Year	2008	<u>2012</u>	2020	2035				
Unleaded	8,855	9,346	10,846	13,228				
Diesel	1,590	1,678	1,947	2,375				
CNG	2,134	2,253	2,614	3,188				
Total	12,578	13,276	15,407	18,791				
Fuel Usage Based on	n 2005 gallon	s per passend	ger					
Year	Ŭ	1990	2000	2005				
Unleaded		4,979	7,411	8,106				
Diesel		875	1,303	1,425				
CNG		-	-	-				
Total		5,855	8,714	9,531				
Abbreviations:								
TOL = takeoffs and la	andings at the	Palm Springs 4	Airport					
CNG = compressed r	•							
Notes:	3							
TOL Data and Fuel	Lloogo from: (Stove Boweer		ningo Donutra	Director of		interrelier 00	

- TOL Data and Fuel Usage from: Steve Bowser, City of Palm Springs Deputy Director of Aviation, September 23, 2010 and October 12, 2010.

- Airport passenger traffic is from the graph in the Cit of Palm Springs Economic Overview, Year 2010 edition

- 2035 TOL assumed to be the same as 2028

City of Palm Springs Greenhouse Gas Inventory Municipal: Fuel Use

Prepared by Michael Brandman Associates

<i>Fuel Cost Provided by</i> Year Gasoline Diesel	the City of Pal 2007 \$ 443,749.42 \$ 66,876.78	2008 \$ 513,807.86	\$ \$	2009 471,776.64 97,885.17	2010 \$ 413,337.81 \$ 86,145.47	Source Reference 1 Reference 1
Fuel Cost - Dollars per	r Gallon					
Year	2007	2008		2009	2010	Source
Gasoline	\$ 3.12	\$ 3.56	\$	2.73	\$ 3.11	Reference 2
Diesel	\$ 3.09	\$ 3.92	\$	2.61	\$ 3.11	Reference 3
Fuel (Gallons)						
Year	2007	2008		2009	2010	Source
Gasoline	142,227	144,328		172,812	132,906	Divide cost by
Diesel	21,643	25,612		37,504	27,700	price per gallon
Fuel per Employee						
Year	2007	2008	3	2009	2010	
Employees		485	5		390	
Gasoline/emp		297.58			340.78	
Diesel/emp		52.81			71.02	
Municipal Fuel use pe	r capita					
Year	2007	2008	3	2009		
Population	46796	47019)	47601		
Gasoline/capita	3.04	3.07		3.63		
Diesel/capita	0.46	0.54		0.79		
Fuel (gallons) Estimat	ions for 1990, 2	2000, and 2005	bas	sed on Fuel pe	er Employee in	2008
Year	1990	2000)	2005	2008	
Employees	519		}	450	485	
Gasoline	154,446	136,293		133,913	144,328	
Diesel	27,407	24,186		23,763	25,612	
Fuel (gallons) Forecas	ts based on Fu	ıel per capita i	n 20	08		
Year	2012	2020)	2035	2020 (%)	2035 (%)
Population	49103	53271		61086		
Gasoline	150,725	163,518		187,507	85%	85%
Diesel	26,747	29,017		33,274	15%	15%
Weighted AB 32 Redu	ction					
		City Percentag	JI AB		Weighted Redu	
Automobiles, ligh		85%		31%		
Heavy duty (fire		15%)	2%	0.3%	
Weighted Reduc	tion				26.6%	
Nataa						

Notes:

- Reference 1: City of Palm Springs, Steve Rakestraw, Fleet Operations/Maintenance Manager. Personal Communication, October 4, 2010.

- Reference 2: Energy Information Administration. California Weekly Retail.

www.eia.doe.gov/oil_gas/petroleum/data_publications/wrgp/mogas_history.html (Used an average of the weekly Califiornia all grades all formulations)

- Reference 3: U.S. Energy Information Administration. Petroleum Navigator. Weekly California No. 2 Diesel Retail Sales by All Sellers. www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=EMD_EPD2D_PTE_SCA_DPG&f=W (Note that an average of all prices in a given year are shown)

- Estimations for prior years is based on fuel per employee because the fuel per employee seems like a better estimator of fuel cost, as years 2008 and 2010 are similar in that regard.

- Forecasts are based on fuel per capita, as it is anticipated that more City employees and services will be needed for a greater population.

City of Palm Springs Greenhouse Gas Inventory Former Palm Springs Landfill

Prepared by Michael Brandman Associates

Estimated Waste in Place - Former Palm Springs Landfill

Construction debris	158000 cubic yards
Household debris	387000 cubic yards

Convert from cubic yards to tons

ioni cubic yarus to tons					
		Adjusted	WIP (cubic	Weight (pounds	WIP Weight
Waste Type	WIPFRAC	WIPFRAC	yards)	per cubic yard)	(tons)
Newspaper	6.4%	9.0%	34,762	500	8,691
Office Paper	10.7%	15.0%	58,118	500	14,529
Corrugated Boxes	10.8%	15.2%	58,661	400	11,732
Coated Paper	2.2%	3.1%	11,949	500	2,987
Food	14.8%	20.8%	80,387	800	32,155
Grass	12.1%	17.0%	65,722	500	16,431
Leaves	6.1%	8.5%	32,861	350	5,751
Branches	6.1%	8.5%	32,861	350	5,751
Lumber		0.0%	-		-
Textiles	2.1%	2.9%	11,406	500	2,852
Diapers	0.1%	0.1%	272	500	68
Construction/Demolition		0.0%	158,000	500	39,500
Medical Waste	0.0%	0.0%	-		-
Sludge/Manure	0.0%	0.0%	-		-
MSW Total	71.3%	100.0%	545,000		140,446

Waste per year (tons)

Assumed to be divided equally by the approximate years in operation, 25 years

5,618

Notes:

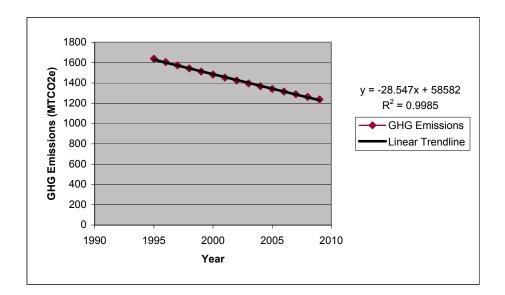
- Estimated waste in place (WIP) from: The Source Group. Final Draft Removal Action Workplan Former Palm Springs Landfill, Intersection of Gene Autry Trail and Ramon Road, Palm Springs, California. December 16, 2003.

- WIPFRAC (fraction of the component in waste in place) from: California Air Resources Board's Implementation of IPCC's Mathematically Exact First-Order Decay Model. June 3, 2010.

- Weight in pounds per cubic yard is from: Washington Department of Ecology. January 2009. Coordinated Prevention Grant Conversion Sheet.

www.ecy.wa.gov/programs/swfa/grants/docs/OutcomeMeasureConvSht.pdf. Categories without a weight were assumed to be 500 pounds.

City of Palm Springs Greenhouse Gas Inventory Former Palm Springs Landfill


Prepared by Michael Brandman Associates

ARB Landfill Emissions Tool Model Estimated Data

Model Estima	ated Data		
Year	CH4	CO2	Total
1995	1413	226	1638
1996	1385	221	1606
1997	1357	217	1574
1998	1330	212	1543
1999	1304	208	1512
2000	1278	204	1482
2001	1253	200	1453
2002	1228	196	1424
2003	1204	192	1396
2004	1180	188	1368
2005	1157	185	1341
2006	1134	181	1315
2007	1111	177	1289
2008	1089	174	1263
2009	1068	171	1238
Projections			
Year	CH4	CO2	Total
2010			1203
2011			1174
2012			1145
2020			917
2030			632

Note:

The ARB Landfill Emissions Tool does not estimate future projections of emissions. The emissions decrease over time. The formula shown in the chart below is used to project the future year emissions. The formula is estimated using data from 1995 to 2009 and is estimated using the Microsoft Excel function for a linear trendline.

California Air Resources Board's Implementation of IPCC's Mathematically Exact First-Order Decay Model

Release date: June 3, 2010

This tool is designed to estimate greenhouse gas emissions from a landfill in support of the Local Government Operations Protocol.

Please follow these steps to estimate emissions:

1) Read the *Methodology* page to become familiar with the equations and the assumptions underlying the calculations.

2) Enter the landfill specific data on the *Landfill Model Inputs* page. This is the only page where data needs to be added or modified.

Data Type	Field or Column Name	Description
Landfill Specific	k Value	Decay factor (see <i>Methodology</i> page).
	State/Country	State or country where the landfill is located. Will
Landmin Specific State/Country Data Year Waste Deposited (Tons) Waste Deposited (% ANDOC) Waste Deposit Greenwaste & Compost - Daily Cover (Tons) Waste Deposit Greenwaste & Compost - Daily Cover (% ANDOC)	determine the waste characterization data used.	
	Year	Year of the data entry values.
	Waste Deposited (Tons)	Amount of waste deposited in that year.
	Waste Deposited (% ANDOC)	Percent of the waste that is degradable, based on
		waste characterization data.
	Greenwaste & Compost - Daily Cover (Tons)	Amount of daily cover materials of the given type
Waste Deposit		used in that year.
Data	Greenwaste & Compost - Daily Cover (% ANDOC)	Percent of the daily cover that is degradable, based
		on waste characterization data.
	Sludge - Daily Cover (Tons)	Amount of daily cover materials of the given type
		used in that year.
	Sludge - Daily Cover (% ANDOC)	Percent of the daily cover that is degradable, based
		on waste characterization data.
Note: Required da	ata fields on the Landfill Model Inputs page are highli	ahted in rose

The rose colored field names indicate which fields require data entry, all others have defaults that will be used in the calculations.

3) If you wish to overwrite the default % ANDOC value with your own value, you can use the calculator on the *Landfill Specific ANDOC Values* page (the last page in this tool) and then type your calculated landfill specific value over the default ANDOC% value.

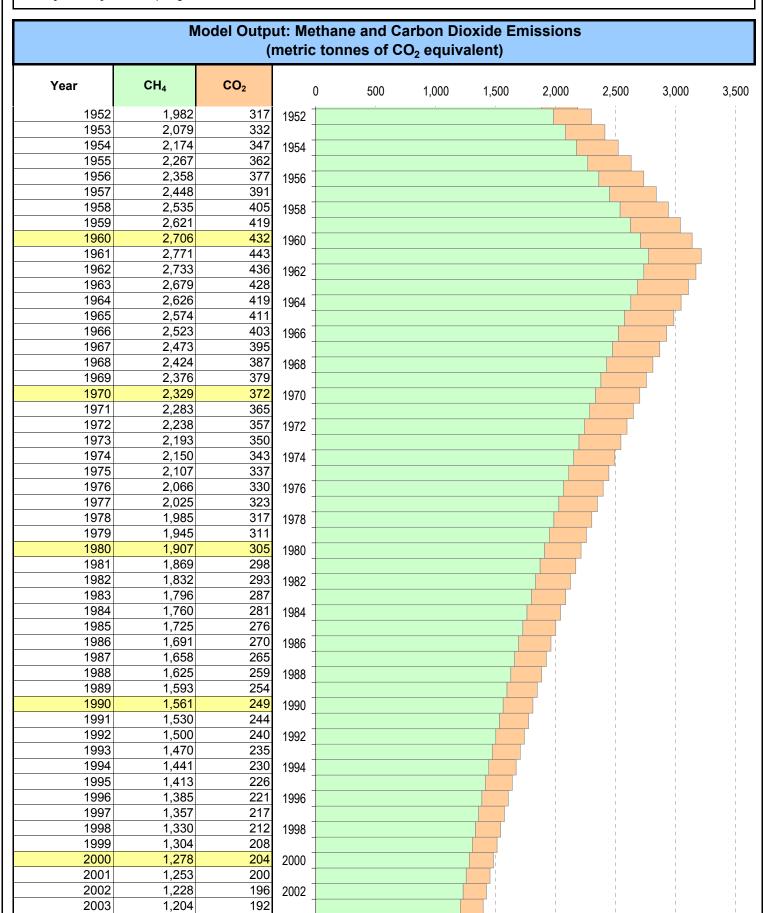
4) Estimates of the emissions reflecting the current inputs are listed on the *Landfill Emissions Output* page and estimates of captured gas heat are available on the *Landfill Gas Heat Output* page.

Data Input: Lanfill Characteristics									
Landfill Name:	Former Palm Spring	Year Ope	ned:	1935	Click for list	s of k values			
State/Country:	CA	If Closed,	Year:	1960	k Value:	0.020			
City/County:	Palm Springs				M Value: 6				
		Data Input: V	Nas	te Deposit H	istory				
	Wast		140		Daily (Cover			
	Waste Dep			Greenwaste	& Compost	Slud			
Year	Tons	% ANDOC		Tons	% ANDOC	Tons	% ANDOC		
<mark>1900</mark> 1901									
1901									
1903									
1904									
1905 1906									
1906									
1908									
1909									
<u>1910</u>									
1911 1912									
1912									
1914									
1915									
1916									
1917 1918									
1919									
1920									
1921									
1922 1923									
1924									
1925									
1926									
1927 1928									
1928									
1930			L						
1931									
1932 1933									
1933									
1935	5,618	10.69%							
1936	5,618	10.69%							
1937	5,618	10.69%							
1938 1939	5,618 5,618	10.69% 10.69%							
1939	5,618	10.69%	-						
1941	5,618	10.69%							
1942	5,618	10.69%							
1943 1944	5,618	10.69% 10.69%							
1944	5,618 5,618	10.69%							
1946	5,618	10.69%							
1947	5,618	10.69%							
1948	5,618	10.69%							

		Data Input: I	Lanf	ill Character	istics				
Landfill Name:	Former Palm Spring	Year Ope	ned:	1935	Click for list	s of k values			
State/Country:		If Closed, `			k Value:				
City/County:	Palm Springs				M Value:	ı			
	· · · · ·								
		Data Input: \	Nas	te Deposit H	istory				
	Wast	e			Daily (Cover			
	Waste Dep	Waste Deposited Greenwaste & Compost Slud							
Year	Tons	% ANDOC		Tons	% ANDOC	Tons	% ANDOC		
1949	5,618	10.69%							
<mark>1950</mark> 1951	5,618 5,618	<mark>10.69%</mark> 10.69%							
1951	5,618	10.69%							
1953	5,618	10.69%							
1954	5,618	10.69%							
1955	5,618	10.69%							
1956	5,618	10.69%							
1957	5,618	10.69%							
1958 1959	5,618 5,618	10.69% 10.69%							
1959	5,618	10.69%	-						
1961	5,010	10.0070							
1962									
1963									
1964									
1965									
1966									
1967 1968									
1969									
1970									
1971									
1972									
1973									
1974									
1975 1976									
1970									
1978			-						
1979									
1980									
1981									
1982			-						
1983 1984									
1984									
1986									
1987			L						
1988									
1989			-						
1990 1001									
1991 1992									
1992			-						
1994									
1995			1						
1996									
1997									

Model Output: Lanfill Characteristics

Landfill Name: Former Palm S State: CA City/County: Palm Springs Year Opened: 1935 If Closed, Year: 1960


k Value: 0.020 **M Value:** 6

	N	lodel Outp ()		ane and Ca nnes of C			nissions			
Year	CH₄	CO2	0	500	1,000	1,500	2,000	2,500	3,000	3,50
1900			1900		, 		, 			
1901			1900			I I	I.	I	I I	1
1902			1000	I I	I	I I	I I		I I	1
1903			1902			I I	I I	I	I I	1
1904			1001	l I		I I	I I	I	I I	I.
1905			1904			I I	I I		I I	1
1906			1906							
1907			1900							1
1908			1000							1
1909			1908							1
1910			1010		I					
1911			1910							1
1912			1010							1
1912			1912				l l			I I
1914			1014							I I
1915			1914							1
1916			1010							1
1917			1916							i i
1918			4040							1
1919			1918							1
1919			4000							1
1920			1920							
1921			4000							1
1922			1922							
1923			1001							
1924			1924							1
1926			4000							1
1927			1926							i i
1927			4000							1
1920			1928							1
1929			4020							į
1930			1930							1
1931			1020	1			1	1		1
1932			1932							
1933			1024							1
1934	17	3	1934							
1935	136	22	1026							
1930	270	43	1936							1
1937	400	64	1020							1
1938	400 529	84	1938							1
1939	654	104				 	 		 	
1940	777	124	1940							1
1941	898	143	1040			 	 		 	
1942	1,017	143	1942							i i
1943	1,133	181	1014				I I		I I	1
1944	1,133	101	1944				 		 	i i
1945	1,240	217					 		 	i i
1946	1,358	217 234	1946				i I			1
1947	1,467	254	1040					I	I I	i i
1948	1,574	268	1948						i I	i I
1949	1,679		1050							1
1950	1,782	285 301	1950					i.	I	i i

Model Output: Lanfill Characteristics

Landfill Name: Former Palm 5 State: CA City/County: Palm Springs Year Opened: 1935 If Closed, Year: 1960

k Value: 0.020 M Value: 6

Model Output: Lanfill Characteristics Landfill Name: Former Palm § Year Opened: 1935 State: CA

City/County: Palm Springs

If Closed, Year: 1960

k Value: 0.020 M Value: 6

Model Output: Methane and Carbon Dioxide Emissions (metric tonnes of CO ₂ equivalent)										
Year	CH₄	CO2	0	500	1,000	1,500	2,000	2,500	3,000	3,500
2004	1,180	188	2004			i i	i	i	i	i
2005	1,157	185	-						i I	i I
2006	1,134	181	2006				l L	1		1
2007	1,111	177				;	1	1	I.	1
2008	1,089	174	2008			l l	1	1	I.	I.
2009	1,068	171								I I
						I I	l I	1	I I	1
						l l	l I	1	I I	1
			_							I I
			_							1
			_							1
			_							I I
			_			i i			i i	i
			_			i I			i I	i i
			_	1		l I	l L	1	I I	i I
			-	l I	1	I I	1	1	I I	I I
				1	l.	1	l.	1	l.	1

Community Greenhouse Gas Emissions in 1990 Detailed Report

	CO ₂	N ₂ O	CH ₄	Equi	v CO ₂	Energy
	(tons)	(lbs)	(lbs)	(tons)	(%)	(MMBtu)
Residential						
Palm Springs, CA						
Natural gas						
Natural Gas	73,488	277	13,850	73,676	19.8	1,256,449
Subtotal Natural gas	73,488	277	13,850	73,676	19.8	1,256,449
Subtotal Residential	73,488	277	13,850	73,676	19.8	1,256,449
Commercial						
Palm Springs, CA						
Natural Gas						
Natural Gas	47,976	181	9,042	48,098	12.9	820,254
Subtotal Natural Gas	47,976	181	9,042	48,098	12.9	820,254
Subtotal Commercial	47,976	181	9,042	48,098	12.9	820,254
Transportation						
Palm Springs, CA						
Miles within City						
Diesel	45,641	267	279	45,686	12.3	566,029
Gasoline	181,606	40,982	42,013	188,400	50.6	2,324,359
Subtotal Miles within City	227,248	41,249	42,292	234,085	62.9	2,890,388
Subtotal Transportation	227,248	41,249	42,292	234,085	62.9	2,890,388
Waste						
Palm Springs, CA						
Waste Generated						Disposal Method - Managed Landfi
Paper Products	0	0	1,014,313	10,650	2.9	
Food Waste	0	0	298,476	3,134	0.8	
Plant Debris	0	0	110,962	1,165	0.3	

Community Greenhouse Gas Emissions in 1990 Detailed Report

	co ₂	CO ₂ N ₂ O	CH ₄	Equiv CO		Energy	
	(tons)	(lbs)	(lbs)	(tons)	(%)	(MMBtu)	
Wood or Textiles	0	0	142,584	1,497	0.4		
Subtotal Waste Generated	0	0	1,566,335	16,447	4.4		_
Subtotal Waste	0	0	1,566,335	16,447	4.4		_
Total	348,711	41,707	1,631,519	372,307 1	100.0	4,967,091	

Community Greenhouse Gas Emissions in 2000 Detailed Report

	co2	N ₂ 0	CH ₄ (Ibs)	Equi	v CO ₂	Energy
	(tons)	(lbs)		(tons)	(%)	(MMBtu)
Residential						
Palm Springs, CA						
Natural gas						
Natural Gas	74,288	280	14,001	74,479	20.7	1,270,130
Subtotal Natural gas	74,288	280	14,001	74,479	20.7	1,270,130
Subtotal Residential	74,288	280	14,001	74,479	20.7	1,270,130
Commercial						
Palm Springs, CA						
Natural Gas						
Natural Gas	51,156	193	9,641	51,287	14.2	874,625
Subtotal Natural Gas	51,156	193	9,641	51,287	14.2	874,625
Subtotal Commercial	51,156	193	9,641	51,287	14.2	874,625
Transportation						
Palm Springs, CA						
Miles traveled within City						
Diesel	39,303	232	243	39,341	10.9	487,421
Gasoline	168,642	37,503	31,152	174,782	48.5	2,158,434
Subtotal Miles traveled within C	207,945	37,735	31,394	214,124	59.5	2,645,855
Subtotal Transportation	207,945	37,735	31,394	214,124	59.5	2,645,855
Waste						
Palm Springs, CA						
Waste Generated						Disposal Method - Managed Landfi
Paper Products	0	0	1,215,011	12,758	3.5	
Food Waste	0	0	379,614	3,986	1.1	
Plant Debris	0	0	132,701	1,393	0.4	

Community Greenhouse Gas Emissions in 2000 Detailed Report

	CO ₂ (tons)	N ₂ O (Ibs)	CH ₄ (Ibs)	Equiv (tons)	CO ₂ (%)	Energy (MMBtu)
Wood or Textiles	0	0	200,900	2,109	0.6	
Subtotal Waste Generated	0	0	1,928,225	20,246	5.6	
Subtotal Waste	0	0	1,928,225	20,246	5.6	
Total	333,389	38,208	1,983,261	360,135 1	100.0	4,790,610

Community Greenhouse Gas Emissions in 2005 Detailed Report

	co2	N ₂ O	СН	Equiv CO2		Energy	
	(tons)	(lbs)	(lbs)	(tons)	(%)	(MMBtu)	
esidential							
Palm Springs, CA							
Natural gas: multi family residential							
Natural Gas	25,892	98	4,880	25,958	6.2	442,681	
Subtotal Natural gas: multi fam	25,892	98	4,880	25,958	6.2	442,681	
Natural gas: single family residentia	I						
Natural Gas	51,400	194	9,687	51,531	12.4	878,795	
Subtotal Natural gas: single far	51,400	194	9,687	51,531	12.4	878,795	
ubtotal Residential	77,291	291	14,567	77,489	18.6	1,321,476	
Palm Springs, CA Natural Gas							
Natural Gas Natural Gas	54,827	207	10,333	54,967	13.2	937,395	
		207	10,555	54,507	15.2	337,335	
		207	10.000	E4.067	12.0	027 305	
Subtotal Natural Gas	54,827	207	10,333	54,967	13.2	937,395	
Subtotal Natural Gas	54,827	207 207	10,333	54,967 54,967	13.2 13.2	937,395 937,395	
ubtotal Commercial					-		
					-		
ubtotal Commercial ransportation					-		
ubtotal Commercial ransportation Palm Springs, CA					-		
ubtotal Commercial ransportation Palm Springs, CA Miles traveled within City	54,827	207	10,333	54,967	13.2	937,395	
ubtotal Commercial ransportation Palm Springs, CA Miles traveled within City Diesel	54,827 59,403	207 351	10,333	54,967	13.2	937,395 736,696	

Community Greenhouse Gas Emissions in 2005 Detailed Report

	CO ₂ (tons)	N ₂ O	CH ₄ (lbs)	Equi	v coʻ	Energy
		(tons) (lbs)		(tons)	(%)	(MMBtu)
Waste						
Palm Springs, CA						
Waste Generated						Disposal Method - Managed Landfill
Paper Products	0	0	944,715	9,920	2.4	
Food Waste	0	0	411,342	4,319	1.0	
Plant Debris	0	0	108,777	1,142	0.3	
Wood or Textiles	0	0	307,135	3,225	0.8	
Subtotal Waste Generated	0	0	1,771,969	18,606	4.5	
Subtotal Waste	0	0	1,771,969	18,606	4.5	
Total	393,008	30,474	1,821,208	416,854	100.0	5,574,377

Community Greenhouse Gas Emissions in 2008 Detailed Report

esidential Palm Springs, CA Natural Gas: multi family residential Natural Gas Subtotal Natural Gas: multi fan Natural Gas: single family residential Natural Gas	(tons) 25,151 25,151 52,423 52,423	(lbs) 95 95 198	(lbs) 4,740 4,740	(tons) 25,216 25,216	v CO₂ (%) (%) 6.7 6.7	(MMBtu) 430,021 430,021	
Palm Springs, CA Natural Gas: multi family residential Natural Gas Subtotal Natural Gas: multi fan Natural Gas: single family residential	25,151 52,423	95					
Natural Gas: multi family residential Natural Gas Subtotal Natural Gas: multi fan Natural Gas: single family residential	25,151 52,423	95					
Natural Gas Subtotal Natural Gas: multi fan Natural Gas: single family residential	25,151 52,423	95					
Subtotal Natural Gas: multi fan Natural Gas: single family residential	25,151 52,423	95					
Natural Gas: single family residential	52,423		4,740	25,216	6.7	430,021	
		198					
Natural Gas		198					
	52 423		9,880	52,557	13.9	896,295	
Subtotal Natural Gas: single fa	52,725	198	9,880	52,557	13.9	896,295	
ubtotal Residential	77,574	292	14,620	77,773	20.5	1,326,316	
Palm Springs, CA Natural Gas							
Natural Gas	42,076	159	7,930	42,184	11.1	719,384	
Subtotal Natural Gas	42,076	159	7,930	42,184	11.1	719,384	
ubtotal Commercial	42,076	159	7,930	42,184	11.1	719,384	
ransportation							
Palm Springs, CA							
Miles traveled within City							
Diesel	46,497	275	289	46,542	12.3	576,636	
Gasoline	195,471	25,672	21,719	199,678	52.7	2,501,807	
Subtotal Miles traveled within (241,967	25,947	22,008	246,220	65.0	3,078,443	
ubtotal Transportation	241,967	25,947	22,008	246,220	65.0	3,078,443	

Community Greenhouse Gas Emissions in 2008 Detailed Report

	CO ₂ (tons)		СН	Equi	v co2	Energy
			(lbs)	(tons)	(%)	(MMBtu)
Waste						
Palm Springs, CA						
Waste						Disposal Method - Managed Landfill
Paper Products	0	0	584,790	6,140	1.6	
Food Waste	0	0	296,572	3,114	0.8	
Plant Debris	0	0	78,066	820	0.2	
Wood or Textiles	0	0	246,825	2,592	0.7	
Subtotal Waste	0	0	1,206,253	12,666	3.3	
Subtotal Waste	0	0	1,206,253	12,666	3.3	
Total	361,617	26,398	1,250,810	378,843	100.0	5,124,143

Community Greenhouse Gas Emissions in 2012 Detailed Report

	co2	N ₂ O	сн ₄	Equiv CO 2		Energy
	(tons)	(lbs)	(lbs)	(tons)	(%)	(MMBtu)
Residential						
Palm Springs, CA						
Natural gas						
Natural Gas	82,753	312	15,596	82,965	19.8	1,414,855
Subtotal Natural gas	82,753	312	15,596	82,965	19.8	1,414,855
Subtotal Residential	82,753	312	15,596	82,965	19.8	1,414,855
Commercial						
Palm Springs, CA						
Natural Gas						
Natural Gas	59,350	224	11,186	59,503	14.2	1,014,734
Subtotal Natural Gas	59,350	224	11,186	59,503	14.2	1,014,734
Subtotal Commercial	59,350	224	11,186	59,503	14.2	1,014,734
Transportation						
Palm Springs, CA						
Miles on roads in City						
Diesel	51,075	303	319	51,125	12.2	633,418
Gasoline	208,436	27,879	23,630	213,005	50.7	2,667,747
Subtotal Miles on roads in City	259,511	28,182	23,949	264,131	62.9	3,301,166
Subtotal Transportation	259,511	28,182	23,949	264,131	62.9	3,301,166
Waste						
Palm Springs, CA						
Waste generated						Disposal Method - Managed Landfi
Paper Products	0	0	610,711	6,412	1.5	
Food Waste	0	0	309,718	3,252	0.8	
Plant Debris	0	0	81,526	856	0.2	

Community Greenhouse Gas Emissions in 2012 Detailed Report

	co2	N ₂ O	CH ₄	H ₄ Equiv CO ₂ Energy		
	(tons)	(lbs)	(lbs)	(tons) (%) (MMBtu)	
Wood or Textiles	0	0	257,765	2,707 0	.6	
Subtotal Waste generated	0	0	1,259,720	13,227 3	.2	
Subtotal Waste	0	0	1,259,720	13,227 3	.2	
Total	401,614	28,717	1,310,450	419,825 100	.0 5,730,755	

Community Greenhouse Gas Emissions in 2020 Detailed Report

	co2	N ₂ O	CH ₄ (Ibs)	Equi	v CO ₂	Energy
	(tons)	(lbs)		(tons)	(%)	(MMBtu)
Residential						
Palm Springs, CA						
Natural gas						
Natural Gas	86,494	326	16,301	86,715	18.5	1,478,810
Subtotal Natural gas	86,494	326	16,301	86,715	18.5	1,478,810
Subtotal Residential	86,494	326	16,301	86,715	18.5	1,478,810
Commercial						
Palm Springs, CA						
Natural Gas (Comm/Industrial)						
Natural Gas	64,520	243	12,160	64,686	13.8	1,103,123
Subtotal Natural Gas (Comm/lı	64,520	243	12,160	64,686	13.8	1,103,123
Subtotal Commercial	64,520	243	12,160	64,686	13.8	1,103,123
Transportation						
Palm Springs, CA						
Vehicles on City roads						
Diesel	65,020	386	409	65,084	13.9	806,363
Gasoline	233,318	32,155	27,183	238,588	50.8	2,986,214
Subtotal Vehicles on City road:	298,339	32,540	27,592	303,672	64.7	3,792,577
Subtotal Transportation	298,339	32,540	27,592	303,672	64.7	3,792,577
Waste						
Palm Springs, CA						
Waste Generated						Disposal Method - Managed Landf
Paper Products	0	0	662,543	6,957	1.5	
Food Waste	0	0	336,005	3,528	0.8	
Plant Debris	0	0	88,445	929	0.2	

Community Greenhouse Gas Emissions in 2020 Detailed Report

	CO ₂ N	N ₂ O	N ₂ O CH ₄	Equiv CO		Energy	
	(tons)	(lbs)	(lbs)	(tons)	(%)	(MMBtu)	
Wood or Textiles	0	0	279,643	2,936	0.6		
Subtotal Waste Generated	0	0	1,366,636	14,350	3.1		
Subtotal Waste	0	0	1,366,636	14,350	3.1		
Total	449,352	33,110	1,422,688	469,423 10	00.0	6,374,510	

Community Greenhouse Gas Emissions in 2035 Detailed Report

	co ₂	N ₂ O	сн ₄	Equi	v co ₂	Energy
	(tons)	(lbs)	(lbs)	(tons)	(%)	(MMBtu)
Residential						
Palm Springs, CA						
Natural gas						
Natural Gas	93,508	352	17,623	93,747	15.9	1,598,733
Subtotal Natural gas	93,508	352	17,623	93,747	15.9	1,598,733
Subtotal Residential	93,508	352	17,623	93,747	15.9	1,598,733
Commercial						
Palm Springs, CA						
Natural Gas (Comm/Industrial)						
Natural Gas	74,213	280	13,987	74,404	12.6	1,268,851
Subtotal Natural Gas (Comm/lı	74,213	280	13,987	74,404	12.6	1,268,851
Subtotal Commercial	74,213	280	13,987	74,404	12.6	1,268,851
Transportation						
Palm Springs, CA						
Miles on City roads						
Diesel	93,205	553	588	93,297	15.8	1,155,898
Gasoline	311,115	9,707	16,414	312,792	53.0	3,981,919
Subtotal Miles on City roads	404,319	10,260	17,001	406,088	68.7	5,137,817
Subtotal Transportation	404,319	10,260	17,001	406,088	68.7	5,137,817
Waste						
Palm Springs, CA						
Waste generated						Disposal Method - Managed Landfi
Paper Products	0	0	759,744	7,977	1.4	
Food Waste	0	0	385,299	4,046	0.7	
Plant Debris	0	0	101,421	1,065	0.2	

Community Greenhouse Gas Emissions in 2035 Detailed Report

	co2	N ₂ O	CH ₄	Equiv	co ₂	Energy
	(tons)	(lbs)	(lbs)	(tons)	(%)	(MMBtu)
Wood or Textiles	0	0	320,669	3,367	0.6	
Subtotal Waste generated	0	0	1,567,133	16,455	2.8	
Subtotal Waste	0	0	1,567,133	16,455	2.8	
Total	572,040	10,892	1,615,744	590,694 1	100.0	8,005,400

Government Greenhouse Gas Emissions in 1990 Detailed Report

	co ₂	N ₂ O	сн₄	Equi	v CO2	Energy	Cost
	(tons)	(lbs)	(lbs)	(tons)	(%)	(MMBtu)	(\$)
Buildings and Facilities							
Palm Springs, California							
Municipal Cogen							
Natural Gas	4,691	18	884	4,703	42.3	80,203	0
Subtotal Municipal Cogen	4,691	18	884	4,703	42.3	80,203	0
Sunrise Plaza Cogen							
Natural Gas	2,616	10	493	2,623	23.6	44,726	0
Subtotal Sunrise Plaza Cogen	2,616	10	493	2,623	23.6	44,726	0
Subtotal Buildings and Facilities	7,307	28	1,377	7,326	65.9	124,930	0
Airport Facilities Palm Springs, CA							
PSP Airport: Fuel - Onsite ground eq	-						
Fuel Oil (#1 2 4)	10	0	3	10	0.1	121	C
Stationary Gasoline	48	1	15	49	0.4	619	0
Subtotal PSP Airport: Fuel - Or	58	1	18	58	0.5	740	0
Subtotal Airport Facilities	58	1	18	58	0.5	740	C
Vehicle Fleet							
Palm Springs, CA							
City Fleet							
Diesel	306	1	1	307	2.8	3,801	0
Gasoline	1,499	334	224	1,553	14.0	19,186	0
Subtotal City Fleet	1,806	335	225	1,860	16.7	22,987	0
Subtotal Vehicle Fleet	1,806	335	225	1,860	16.7	22,987	0

Government Greenhouse Gas Emissions in 1990 Detailed Report

	co ₂	N ₂ O	сн ₄	Equiv CC	Energy	Cost (\$)
	(tons)	(lbs)	(lbs)	(tons) (%	6) (MMBtu)	
Employee Commute						
Palm Springs, CA						
Employee Commute						
Diesel	151	1	0	152 1	.4 1,877	0
Gasoline	1,662	402	380	1,728 15	.5 21,266	0
Subtotal Employee Commute	1,813	403	380	1,879 16	.9 23,143	0
Subtotal Employee Commute	1,813	403	380	1,879 16	.9 23,143	0
Total	10,983	766	2,000	11,123 100	.0 171,799	0

Government Greenhouse Gas Emissions in 2000 Detailed Report

	co ₂	N ₂ O	сн₄	Equiv	v co2	Energy	Cost
	(tons)	(lbs)	(lbs)	(tons)	(%)	(MMBtu)	(\$)
Buildings and Facilities							
Palm Springs, CA							
Municipal Cogeneration Plant							
Natural Gas	8,017	30	1,511	8,037	56.5	137,068	0
Subtotal Municipal Cogeneratic	8,017	30	1,511	8,037	56.5	137,068	0
Sunrise Plaza Cogeneration Plant							
Natural Gas	3,000	11	565	3,007	21.1	51,284	0
Subtotal Sunrise Plaza Cogene	3,000	11	565	3,007	21.1	51,284	0
Subtotal Buildings and Facilities	11,016	42	2,076	11,045	77.6	188,352	0
Palm Springs, CA PSP Airport: Fuel - onsite ground eq	uip.						
	-					101	
Fuel Oil (#1 2 4)	15 72	0	4	15	0.1	181	0
Stationary Gasoline		1	22	72	0.5	921	0
Subtotal PSP Airport: Fuel - on	87	1	27	87	0.6	1,101	0
Subtotal Airport Facilities	87	1	27	87	0.6	1,101	0
Vehicle Fleet							
Palm Springs, CA							
City Fleet							
Diesel	270	1	1	271	1.9	3,354	0
Gasoline	1,323	338	222	1,378	9.7	16,931	0
Subtotal City Fleet	1,593	340	223	1,648	11.6	20,285	0
	1,593						

Government Greenhouse Gas Emissions in 2000 Detailed Report

	co ₂	N_2O CH_4	Equiv CO ₂		Energy	Cost	
	(tons)	(lbs)	(lbs)	(tons)	(%)	(MMBtu)	(\$)
Employee Commute							
Palm Springs, CA							
Employee Commute							
Diesel	121	1	0	121	0.9	1,503	0
Gasoline	1,278	288	227	1,325	9.3	16,357	0
Subtotal Employee Commute	1,399	288	228	1,446	10.2	17,859	0
Subtotal Employee Commute	1,399	288	228	1,446	10.2	17,859	0
Total	14,095	671	2,554	14,226	100.0	227,597	0

Government Greenhouse Gas Emissions in 2005 Detailed Report

	co2	N ₂ O	СН4	Equi	v co,	Energy	Cost
	(tons)	(lbs)	(lbs)	(tons)	(%)	(MMBtu)	(\$)
Buildings and Facilities							
Palm Springs, CA							
Municipal Cogeneration Plant							
Natural Gas	6,625	25	1,249	6,642	50.8	113,273	0
Subtotal Municipal Cogeneratic	6,625	25	1,249	6,642	50.8	113,273	0
Sunrise Plaza Cogeneration Plant							
Natural Gas	3,393	13	639	3,401	26.0	58,006	0
Subtotal Sunrise Plaza Cogene	3,393	13	639	3,401	26.0	58,006	0
Subtotal Buildings and Facilities	10,018	38	1,888	10,044	76.8	171,279	0
Airport Facilities Palm Springs, CA							
PSP Airport: Fuel - onsite ground equ	<i>ווף.</i> 16	0	5	16	0.1	198	0
Stationary Gasoline	79	1	24	79	0.1	1,007	0
Subtotal PSP Airport: Fuel - on	95	2	29	95	0.0	1,205	0
Subtotal Airport Facilities	95	2	29	95	0.7	1,205	0
Vehicle Fleet							
Palm Springs, CA							
City Fleet							
Diesel	266	1	1	266	2.0	3,295	0
Gasoline	1,300	200	140	1,332	10.2	16,635	0
Subtotal City Fleet	1,565	201	141	1,598	12.2	19,931	0
Subtotal Vehicle Fleet	1,565	201	141	1,598	12.2	19,931	0

Government Greenhouse Gas Emissions in 2005 Detailed Report

	co2	co ₂ N ₂ O	СН₄	Equiv	co	Energy (MMBtu)	Cost (\$)
	(tons)	(lbs)	(lbs)	(tons)	(%)		
Employee Commute							
Palm Springs, CA							
Employee Commute							
Diesel	118	1	0	118	0.9	1,466	0
Gasoline	1,193	175	141	1,221	9.3	15,267	0
Subtotal Employee Commute	1,311	176	141	1,340	10.2	16,733	0
Subtotal Employee Commute	1,311	176	141	1,340	10.2	16,733	0
Total	12,989	417	2,199	13,077	100.0	209,147	0

Government Greenhouse Gas Emissions in 2008 Detailed Report

	co ₂	N ₂ O	сн₄	Equi	v CO2	Energy	Cost
	(tons)	(lbs)	(lbs)	(tons)	(%)	(MMBtu)	(\$)
Buildings and Facilities							
Palm Springs, CA							
Municipal Cogeneration Plant							
Natural Gas	6,335	24	1,194	6,351	49.3	108,307	C
Subtotal Municipal Cogeneratic	6,335	24	1,194	6,351	49.3	108,307	(
Palm Springs, California							
Sunrise Plaza Cogeneration Plant							
Natural Gas	3,281	12	618	3,290	25.5	56,104	C
Subtotal Sunrise Plaza Cogene	3,281	12	618	3,290	25.5	56,104	C
ubtotal Buildings and Facilities	9,616	36	1,812	9,641	74.8	164,411	
Palm Springs, CA PSP Airport: Fuel - onsite ground equ	uip.						
PSP Airport: Fuel - onsite ground equ	uip.						
Fuel Oil (#1 2 4)	18	0	5	18	0.1	220	(
Natural Gas	16	0	3	16	0.1	265	C
Stationary Gasoline	86	1	27	86	0.7	1,100	C
Subtotal PSP Airport: Fuel - on	119	2	35	120	0.9	1,586	C
Subtotal Airport Facilities	119	2	35	120	0.9	1,586	C
/ehicle Fleet							
Palm Springs, CA							
City Fleet							
Diesel	286	2	1	287	2.2	3,552	C
Gasoline	1,401	192	139	1,432	11.1	17,929	C
Subtotal City Fleet	1,687	193	140	1,719	13.3	21,481	C
Subtotal Vehicle Fleet	1,687	193	140	1,719	13.3	21,481	0

Government Greenhouse Gas Emissions in 2008 Detailed Report

	CO ₂ (tons)	N ₂ O (Ibs)	CH ₄ (Ibs)	Equiv C (tons)	;0 2 (%)	Energy (MMBtu)	Cost (\$)
Employee Commute							
Palm Springs, CA							
Employee Commute							
Diesel	127	1	0	127	1.0	1,573	0
Gasoline	1,257	164	140	1,284 1	0.0	16,093	0
Subtotal Employee Commute	1,384	165	140	1,411 1	0.9	17,666	0
Subtotal Employee Commute	1,384	165	140	1,411 1	0.9	17,666	0
Total	12,807	396	2,128	12,891 10	0.0	205,144	0

Government Greenhouse Gas Emissions in 2012 Detailed Report

co2	N ₂ 0 Сн	4	=941	v CO ₂	Energy	Cost (\$)
(tons)	(lbs)	(lbs)	(tons)	(%)	(MMBtu)	
6,335	24	1,194	6,351	50.0	108,307	C
6,335	24	1,194	6,351	50.0	108,307	C
3,281	12	618	3,290	25.9	56,104	C
3,281	12	618	3,290	25.9	56,104	C
9,616	36	1,812	9,641	75.9	164,411	C
oment						
19	0	6	19	0.1	233	C
16	0	3	16	0.1	280	C
91	2	28	91	0.7	1,161	C
126	2	37	127	1.0	1,674	C
126	2	37	127	1.0	1,674	C
299	2	1	299	2.4	3,709	C
1,463	202	147	1,496	11.8	18,724	C
1,762	204	148	1,795	14.1	22,433	C
1,762	204	148	1,795	14.1	22,433	0
	6,335 6,335 3,281 3,281 9,616 0ment 19 16 91 126 126 126 126 126	6,335 24 6,335 24 3,281 12 3,281 12 9,616 36 oment 19 16 0 91 2 126 2 126 2 126 2 126 2 126 2 126 2 126 2 126 2 126 2 126 2 126 2 126 2 127 209 1,463 202 1,762 204	6,335 24 1,194 6,335 24 1,194 6,335 24 1,194 3,281 12 618 3,281 12 618 9,616 36 1,812 oment	6,335 24 1,194 6,351 6,335 24 1,194 6,351 3,281 12 618 3,290 3,281 12 618 3,290 9,616 36 1,812 9,641 oment	6,335 24 $1,194$ $6,351$ 50.0 $6,335$ 24 $1,194$ $6,351$ 50.0 $3,281$ 12 618 $3,290$ 25.9 $3,281$ 12 618 $3,290$ 25.9 $9,616$ 36 $1,812$ $9,641$ 75.9 oment 75.9 75.9 75.9 75.9 19 0 6 19 0.1 16 0 3 16 0.1 126 2 37 127 1.0 126 2 37 127 1.0 299 2 1 299 2.4 $1,463$ 202 147 1.496 11.8 $1,762$ 204 148 $1,795$ 14.1	6,335 24 $1,194$ $6,351$ 50.0 $108,307$ $6,335$ 24 $1,194$ $6,351$ 50.0 $108,307$ $3,281$ 12 618 $3,290$ 25.9 $56,104$ $3,281$ 12 618 $3,290$ 25.9 $56,104$ $9,616$ 36 $1,812$ $9,641$ 75.9 $164,411$ oment 19 0 6 19 0.1 233 16 0 3 16 0.1 280 91 2 28 91 0.7 $1,161$ 126 2 37 127 1.0 $1,674$ 126 2 37 127 1.0 $1,674$ 126 2 1 299 2.4 $3,709$ $1,463$ 202 147 $1,496$ 11.8 $18,724$ $1,762$ 204 148 $1,795$ 14.1 $22,433$

Government Greenhouse Gas Emissions in 2012 Detailed Report

	co ₂	N ₂ O CH ₄	Equiv	v CO ₂	Energy	Cost	
	(tons)	(lbs)	(lbs)	(tons)	(%)	(MMBtu)	(\$)
Employee Commute							
Palm Springs, CA							
Employee Commute							
Diesel	102	1	0	102	0.8	1,265	0
Gasoline	1,034	34	59	1,040	8.2	13,231	0
Subtotal Employee Commute	1,136	34	59	1,142	9.0	14,496	0
Subtotal Employee Commute	1,136	34	59	1,142	9.0	14,496	0
Total	12,640	276	2,056	12,704	100.0	203,014	0

Government Greenhouse Gas Emissions in 2020 Detailed Report

	co2	N ₂ O	СН4	Equi	v CO2	Energy	Cost
	(tons)	(lbs)	(lbs)	(tons)	(%)	(MMBtu)	(\$)
Buildings and Facilities							
Palm Springs, California							
Municipal Cogen Plant							
Natural Gas	6,335	24	1,194	6,351	49.3	108,307	0
Subtotal Municipal Cogen Plan	6,335	24	1,194	6,351	49.3	108,307	0
Sunrise Plaza Cogen Plant							
Natural Gas	3,281	12	618	3,290	25.5	56,104	0
Subtotal Sunrise Plaza Cogen	3,281	12	618	3,290	25.5	56,104	0
Subtotal Buildings and Facilities	9,616	36	1,812	9,641	74.9	164,411	0
Airport Facilities							
Palm Springs, CA							
PSP Airport: Fuel - onsite ground equ	ip.						
Fuel Oil (#1 2 4)	22	0	7	22	0.2	270	0
Natural Gas	19	0	4	19	0.1	325	0
Stationary Gasoline	105	2	33	106	0.8	1,347	0
Subtotal PSP Airport: Fuel - on	146	2	43	147	1.1	1,942	0
Subtotal Airport Facilities	146	2	43	147	1.1	1,942	0
Vehicle Fleet							
Palm Springs, CA							
City Fleet							
Diesel	324	2	1	325	2.5	4,024	0
Gasoline	1,587	220	160	1,623	12.6	20,313	0
Subtotal City Fleet	1,912	222	161	1,948	15.1	24,337	0
Subtotal Vehicle Fleet	1,912	222	161	1,948	15.1	24,337	0

This report has been generated for Palm Springs, California using ICLEI's Clean Air and Climate Protection 2009 Software.

Government Greenhouse Gas Emissions in 2020 Detailed Report

	co	N ₂ O	СН4	Equiv	co	Energy	Cost
	(tons)	(lbs)	(lbs)	(tons)	(%)	(MMBtu)	(\$)
Employee Commute							
Palm Springs, CA							
Employee Commute							
Diesel	102	1	0	102	0.8	1,265	0
Gasoline	1,034	34	59	1,040	8.1	13,231	0
Subtotal Employee Commute	1,136	34	59	1,142	8.9	14,496	0
Subtotal Employee Commute	1,136	34	59	1,142	8.9	14,496	0
Total	12,810	295	2,075	12,877	100.0	205,186	0

Government Greenhouse Gas Emissions in 2035 Detailed Report

	co ₂	N ₂ O	сн₄	Equi	v co2	Energy	Cost
	(tons)	(lbs)	(lbs)	(tons)	(%)	(MMBtu)	(\$)
Buildings and Facilities							
Palm Springs, California							
Municipal Cogen Plant							
Natural Gas	6,335	24	1,194	6,351	48.1	108,307	C
Subtotal Municipal Cogen Plan	6,335	24	1,194	6,351	48.1	108,307	C
Sunrise Plaza Cogen							
Natural Gas	3,281	12	618	3,290	24.9	56,104	C
Subtotal Sunrise Plaza Cogen	3,281	12	618	3,290	24.9	56,104	0
Subtotal Buildings and Facilities	9,616	36	1,812	9,641	73.1	164,411	0
Airport Facilities							
Palm Springs, CA							
PSP Airport: Fuel - onsite ground equ	uip.						
Fuel Oil (#1 2 4)	27	0	8	27	0.2	329	C
Natural Gas	23	0	4	23	0.2	396	C
Stationary Gasoline	128	2	40	129	1.0	1,643	C
Subtotal PSP Airport: Fuel - on	178	3	52	179	1.4	2,369	C
Subtotal Airport Facilities	178	3	52	179	1.4	2,369	C
Vehicle Fleet							
Palm Springs, CA							
City fleet							
Diesel	372	2	1	372	2.8	4,614	C
Gasoline	1,820	253	184	1,861	14.1	23,293	C
Subtotal City fleet	2,192	255	185	2,233	16.9	27,907	C
Subtotal Vehicle Fleet	2,192	255	185	2,233	16.9	27,907	0
	2,102	200	100	2,200	10.0	21,001	

This report has been generated for Palm Springs, California using ICLEI's Clean Air and Climate Protection 2009 Software.

Government Greenhouse Gas Emissions in 2035 Detailed Report

	co	N ₂ O	СН	Equiv	co	Energy	Cost
	(tons)	(lbs)	(lbs)	(tons)	(%)	(MMBtu)	(\$)
Employee Commute							
Palm Springs, California							
Employee Commute							
Diesel	102	1	0	102	0.8	1,265	0
Gasoline	1,034	34	59	1,040	7.9	13,231	0
Subtotal Employee Commute	1,136	34	59	1,142	8.7	14,496	0
Subtotal Employee Commute	1,136	34	59	1,142	8.7	14,496	0
Total	13,122	328	2,108	13,195 1	00.0	209,183	0

Facility Emissions Public Report Wildflower Energy, LP - Indigo Generation, LLC

Facility Emissions Public Report

(Public)

08/25/2010 16:18:37

Facility Name	Wildflower Energy, LP - Indigo Generation, LLC
ARB ID	101343
Primary Sector	Electricity Generation
Secondary Sectors	
NAICS Code	221112 - Fossil Fuel Electric Power Generation
Facility Description	Peaker Power Plant
Address	63500 19th Avenue N. Palm Springs, California 92258 United States
Geographic Location	33.91140, -116.55330
Air Basin	SOUTH COAST
District	SOUTH COAST AQMD
County	Riverside
Facility Contact	Jason King
Contact Email	j.king@dgc-ops.com
Contact Phone	760-288-2148
Reporting Year	2008
Reporting Period	01/01/2008 - 12/31/2008

Overall Reporting Status

Verification Ready

Note: Data shown here are subject to change. The data may not have not undergone independent third party verification or ARB staff review. Where errors are discovered mechanisms are available to allow revisions to the data.

Facility Emissions Public Report

(Public)

08/25/2010 16:18:37

TOTAL EMISSIONS: Wildflower Energy, LP - Indigo Generation, LLC

* All emission values are displayed in metric tons. CO2 Biomass values not included in the CO2 Eq. sum. The summed and supplemental values tables include data reported for the facility and associated units. This applies to the emissions and fuels tables.

Total Emissions Reporting Status:

Verif	cation	Ready

Summed Emissions Data	CO2 Eq.	CO2	CH4	N2O	CO2 Biomass	HFCs	SF6
Stationary Combustion	69,471	69,411.200	1.086	0.121	0.000	N/A	N/A
Process	0	0.000	0.000	0.000	0.000	N/A	N/A
Stationary Combustion and Process	0	0.000	N/A	N/A	0.000	N/A	N/A
Flares and Destruction (Refinery)	0	0.000	0.000	0.000	0.000	N/A	N/A
Fugitive	0	0.000	0.000	0.000	0.000	0.000	0.000
TOTAL SUMMED EMISSIONS	69,471	69,411.200	1.086	0.121	0.000	0.000	0.000

Optional Emissions	CO2 Eq.	CO2	CH4	N2O	CO2 Biomass	HFCs	SF6
Stationary Combustion	0	0.000	0.000	0.000	0.000	N/A	N/A
Process	0	0.000	0.000	0.000	0.000	N/A	N/A
Stationary Combustion and Process	0	0.000	0.000	0.000	0.000	N/A	N/A
Flares and Destruction (Refinery)	0	0.000	0.000	0.000	0.000	N/A	N/A
Fugitive	0	0.000	0.000	0.000	0.000	0.000	0.000
Optional (Mobile)	0	0.000	0.000	0.000	0.000	N/A	N/A
Portable Equipment	0	0.000	0.000	0.000	0.000	N/A	N/A
TOTAL OPTIONAL EMISSIONS	0	0.000	0.000	0.000	0.000	0.000	0.000

De minimis Emissions	Value (metric tons)
Total Summed CO2 Eq.(includes CO2 Biomass)	69,471
Total De minimis Emissions	0
Percent of Total	0.000%
3% Threshold	2,084
Value Threshold	20,000

Facility Emissions Public Report

(Public)

08/25/2010 16:18:37

VERIFICATION INFORMATION: Wildflower Energy, LP - Indigo Generation, LLC

Verification Body Name Verification Body Address Trinity Consultants, Inc. 1 Technology Drive, Suite F-215 Irvine, California 92618 United States

Verification Finding

Facility Emissions Public Report

(Public)

08/25/2010 16:19:22

Facility Emissions Public Report Wildflower Energy, LP - Indigo Generation, LLC Wildflower Energy, LP - Indigo Generation, LLC Facility Name ARB ID 101343 Primary Sector **Electricity Generation** Secondary Sectors NAICS Code 221112 - Fossil Fuel Electric Power Generation Facility Description Peaker Power Plant Address 63500 19th Avenue N. Palm Springs, California 92258 United States Geographic Location 33.91140, -116.55330 SOUTH COAST Air Basin SOUTH COAST AQMD District County Riverside Facility Contact Jason King Contact Email j.king@dgc-ops.com Contact Phone 760-288-2148 Reporting Year 2009 **Reporting Period** 01/01/2009 - 12/31/2009

Overall Reporting Status

Verification Ready

Note: Data shown here are subject to change. The data may not have not undergone independent third party verification or ARB staff review. Where errors are discovered mechanisms are available to allow revisions to the data.

Facility Emissions Public Report

(Public)

08/25/2010 16:19:22

TOTAL EMISSIONS: Wildflower Energy, LP - Indigo Generation, LLC

* All emission values are displayed in metric tons. CO2 Biomass values not included in the CO2 Eq. sum. The summed and supplemental values tables include data reported for the facility and associated units. This applies to the emissions and fuels tables.

Total Emissions Reporting Status:

Verification	Ready
--------------	-------

Summed Emissions Data	CO2 Eq.	CO2	CH4	N2O	CO2 Biomass	HFCs	SF6
Stationary Combustion	38,406	38,355.900	0.625	0.120	0.000	N/A	N/A
Process	0	0.000	0.000	0.000	0.000	N/A	N/A
Stationary Combustion and Process	0	0.000	N/A	N/A	0.000	N/A	N/A
Flares and Destruction (Refinery)	0	0.000	0.000	0.000	0.000	N/A	N/A
Fugitive	0	0.000	0.000	0.000	0.000	0.000	0.000
TOTAL SUMMED EMISSIONS	38,406	38,355.900	0.625	0.120	0.000	0.000	0.000

Optional Emissions	CO2 Eq.	CO2	CH4	N2O	CO2 Biomass	HFCs	SF6
Stationary Combustion	0	0.000	0.000	0.000	0.000	N/A	N/A
Process	0	0.000	0.000	0.000	0.000	N/A	N/A
Stationary Combustion and Process	0	0.000	0.000	0.000	0.000	N/A	N/A
Flares and Destruction (Refinery)	0	0.000	0.000	0.000	0.000	N/A	N/A
Fugitive	0	0.000	0.000	0.000	0.000	0.000	0.000
Optional (Mobile)	0	0.000	0.000	0.000	0.000	N/A	N/A
Portable Equipment	0	0.000	0.000	0.000	0.000	N/A	N/A
TOTAL OPTIONAL EMISSIONS	0	0.000	0.000	0.000	0.000	0.000	0.000

De minimis Emissions	Value (metric tons)
Total Summed CO2 Eq.(includes CO2 Biomass)	38,406
Total De minimis Emissions	0
Percent of Total	0.000%
3% Threshold	1,152
Value Threshold	20,000

Facility Emissions Public Report

(Public)

08/25/2010 16:19:22

VERIFICATION INFORMATION: Wildflower Energy, LP - Indigo Generation, LLC

Verification Body Name Verification Body Address Trinity Consultants, Inc. 1 Technology Drive, Suite F-215 Irvine, California 92618 United States

Verification Finding

Appendix B: Southern California Edison Reports

CUSTOMER REVENUE AND CONSUMPTION REPORTING SYSTEM PAGE 20 FRANCHI3E REVENUE BY CITY AND COUNTY CURRENT MONTH AND YEAR-TQ-DATE DECEMBER 1990 DPB 4208 PREPARED: 01/10/91 09:13:56

INCORPORATED CITIES (DIST/GEO AREAS)

		RANCHISE BASE	KNH s	ALES		
	CURRENT MC	YEAR TO DATE	CURRENT MO	YEAR TO DATE	NUMBER OF CUSTOMERS	NO. METERS OH SOURCE
PALM SPRINGS, 4		1 X 1				
79 01	3,510,339.90	54,586,510.42	34,905,751	540,152,219	30,529	8,807
79 11	20,198.41	262,682.93	235,911	2,637,279	7	1
79 31	106,950.04	1,735,727.34	996,691	16,722,800	1,280	971
SUBTOTAL	3,637,488.35	, 56, 584, 920.69	36,138,353	559,512,298	31,816	9,779
				And the state		

Electricity Use Report For City of Palm Springs Year 2000

Prepared by

Southern California Edison

Version 5.0

October 4th, 2010

I. Introduction

The purpose of this report is to fulfill your request for overall energy consumption data for the City of Palm Springs. SCE has made every effort to fulfill this request. However, our legal responsibility of maintaining confidentiality of individual customer data limits us to providing only the following information:

- Rate group descriptions
- kWh consumption, and
- kW demand for those rate groups with demand meters (non-coincident and • coincident loads); no kW demand data is available for those rate groups that do not have demand metered data

II. **Energy and Demand Data Availability**

Rate group specific energy consumption data is readily available and included within this report. However, several of our rate schedules such as Schedule "D," the standard domestic rate, do not require the measurement of demand data. Therefore, coincident demand-related data within this report is only an estimate reflecting those rate groups where demand is measured. Table A summarizes the availability of demand data by rate group:

<u> Table A – Data Availability Table</u>						
Rate Groups with Demand Data	Rate Groups <i>without</i> Demand Data					

GS-2, PA-2, TOU-PA-5, AG TOU, TOU-GS-3, and TOU-8 Domestic, GS-1, PA1, TC-1 and Street Lighting

For rate groups *with* measured demand data, we have provided:

- Total kWh
- Non-coincident peak demand this is the sum of the individual accounts' maximum peak demands, regardless of when they occur
- Coincident peak demand this is a calculated field based on application of the coincidence factors outlined on page 3, section III
- Number of accounts •

For rate groups *without* measured demand data, we have provided:

- Total kWh .
- Number of accounts

III. <u>Coincidence Factors</u>

Coincidence factor is an indication of how closely the individual customer peaks conform to the time of the rate group peak. Coincidence factor is expressed as a proportion and can never be greater than 1.0. Table B lists coincidence factors based SCE system wide peak demands.

Table C on page 4 contains calculated values of coincident peak demand. To derive these values, the rate class non-coincident peak (Table C) is multiplied by its respective rate class coincidence factor, in Table B, yielding a calculated "Coincident Peak (kW)". The calculated coincident peaks approximate the maximum peak for each rate class.

	Coincidence Factor				Coincidence Factor		
Rate Group	Annual	Summer	Winter	Rate Group	Annual	Summer	Winter
Domestic-Single	0.38	0.42	0.30	GS-1	0.46	0.52	0.41
Domestic-Multiple	0.26	0.32	0.24	TC-1	1.00	1.00	1.00
Domestic- Mstr Mtrd	0.61	0.66	0.56	GS-2	0.71	0.74	0.70
				TOU-GS	0.53	0.54	0.58
Total Domestic	0.34	0.39	0.28	Total Sm and Med	0.61	0.65	0.60

Table B - System Coincidence Factors

	Coincidence Factor				Coincidence Factor		
Rate Group	Annual	Summer	Winter	Rate Group	Annual	Summer	Winter
PA-1	0.40	0.44	0.34	TOU-8-Secondry	0.76	0.79	0.76
PA-2	0.65	0.70	0.63	TOU-8-Primary	0.70	0.74	0.70
AGTOU	0.62	0.67	0.54	TOU-8-Sub	0.67	0.71	0.68
Tou-PA-5	0.84	0.84	0.86				
Total AG&Pump	0.46	0.50	0.40	Total Large Power	0.70	0.74	0.71

IV. Data Description

The summaries provided in Tables C, are based on 12 months usage data ending December, 2000 for SCE installed service accounts within the city's boundaries. The accounts included in the dataset were extracted from SCE's Customer Service System based on the Public Authority Code for the City of Palm Springs. This code is used to identify accounts by municipality for the purpose of calculating state and local taxes. Public Authority Code is permanently retained as a part of each premise's identification regardless of occupancy. The only time a Public Authority Code changes is when a city or county annexes a given piece of property into its territory or a particular piece of property is transferred from one public authority to another through other means.

V. Summary of Results (January 1, 2000 – December 31, 2000)

				CALCULATED		
			NONCOINCIDENT	COINCIDENT	NUMBER OF	% OF
RATE GROUP	ANNUAL KWH	% of TOTAL	PEAK	PEAK	ACCOUNTS	TOTAL
AG TOU	32,778,048	5.2%	8,042	4,986	49	0.15%
DOMESTIC	286,386,047	45.5%	-	-	28,998	86.24%
GS-1	48,752,905	7.8%	-	-	3,552	10.56%
GS-2	143,310,811	22.8%	43,936	31,195	976	2.90%
TOU-8	117,546,429	18.7%	27,297	19,108	49	0.15%
		_				
Grand Total	628,774,240				33,624	
DA % of kWh	6.2%					

Table C – Total of Account Summary Data for Bundled and Direct Access Customers

<u>Application of 15/15 Rule (Section VIII. Release of Aggregated Customer Information, p. 6)</u> The PA-1, and PA-2 rate classes were combined into the AG TOU rate group.

Street Lighting and Traffic Control information were not included because SCE database do not keep track of this Information dated back more than 4 years.

VI. Additional Data Availability

The data listed in Tables C are at a summary level, and are not displayed by time-of-use. For your convenience we have attached time-of-use load profiles (Appendix A) for each rate class. In the event that you would like the detailed data that supports these load profiles (annual hourly load data for each rate class average profile), you can find it on SCE's website at the following address:

http://www.sce.com/AboutSCE/Regulatory/loadprofiles/

Additionally, revenue impacts are often part of an overall economic analysis related to energy consumption. In the event that you would like specific rate schedules, you can find them at the following web address:

http://www.sce.com/AboutSCE/Regulatory/tariffbooks/ratespricing/

VII. Public Goods Charge Energy Efficiency Funds

SCE estimated the City of Palm Springs's proportional share of Public Goods Charge (PGC) funded energy efficiency activities that the California Public Utilities Commission might make available to the customers in the City of Palm Springs if it became a community choice aggregator ("CCA") but did not implement energy efficiency programs in the CCA territory. SCE performed the estimated proportional share calculation in accordance with the directives of Decision (D.) 03-07-034 of the California Public Utilities Commission, and determined that the City of Palm Springs's estimated proportional share is \$ 317,665. Please note that the estimated proportional share calculation does not necessarily represent an amount of funds that would be made available for energy efficiency programs in the City of Palm Springs's territory should the City of Palm Springs become a CCA. As stated in D.03-07-034, the proportional share calculation is only used to estimate non-CCA expenditures in a CCA's territory. Also note that the proportional share estimate is not equal to the amount of PGC funds collected from ratepayers in the City of Palm Springs, since the PGC rate includes authorized amounts for energy efficiency as well as other public interest programs.

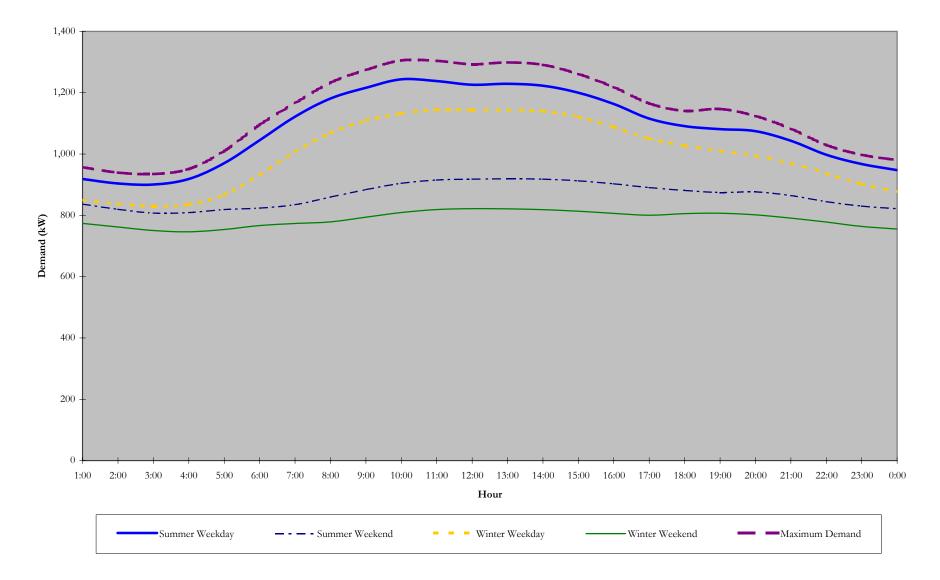
VIII. <u>Release of Aggregated Customer Information</u>

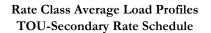
The 15/15 Rule is intended to protect customer confidentiality by reducing the possibility of identifying customers through the release of usage information. SCE will apply the 15/15 Rule in releasing aggregated customer information. The rule was initially implemented by the California Public Utilities Commission during Direct Access proceedings in 1997 and was adopted through D. 97-10-031.

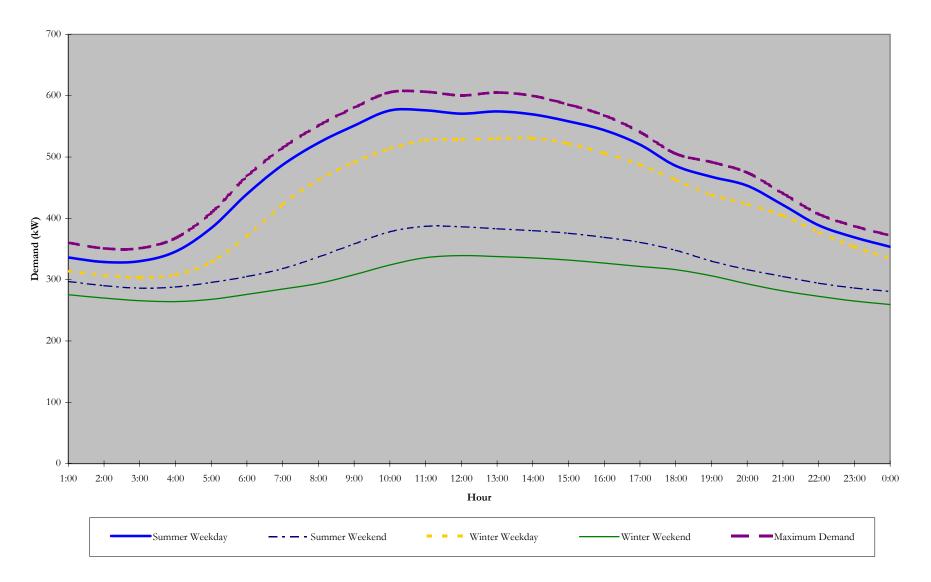
The 15/15 rule requires that any aggregated information provided by the Utilities must be made up of at least 15 customers, and a customer's load must be less than 15% of an assigned category. If the number of customers in the compiled data is below 15, or if a single customer's load is more than 15% of the total data, categories (e.g., rate classes) must be combined before the information is released. The rule further requires that if the 15/15 rule is triggered for a second tie after the data has been screened once already using the 15/15 rule, then the customer is dropped from the information provided.

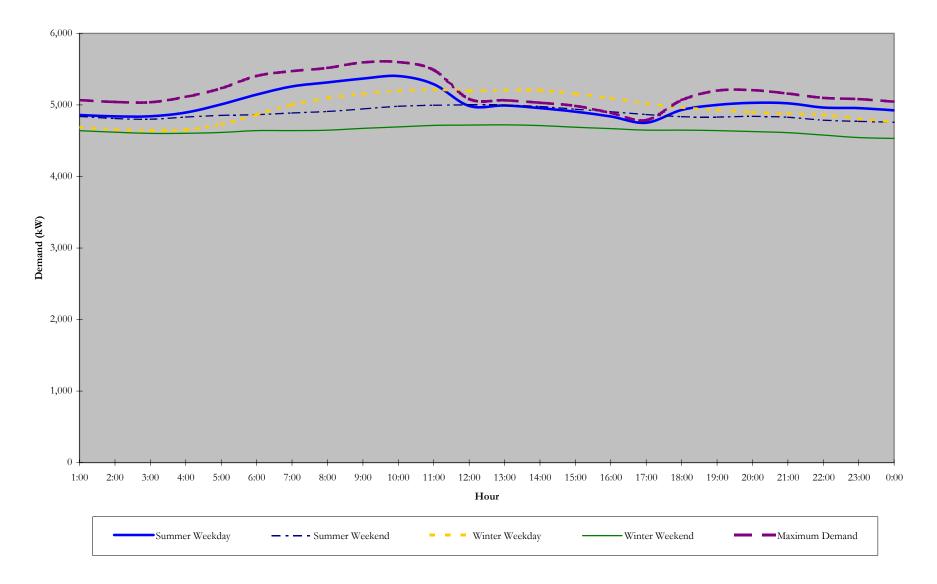
IX. <u>Disclaimer</u>

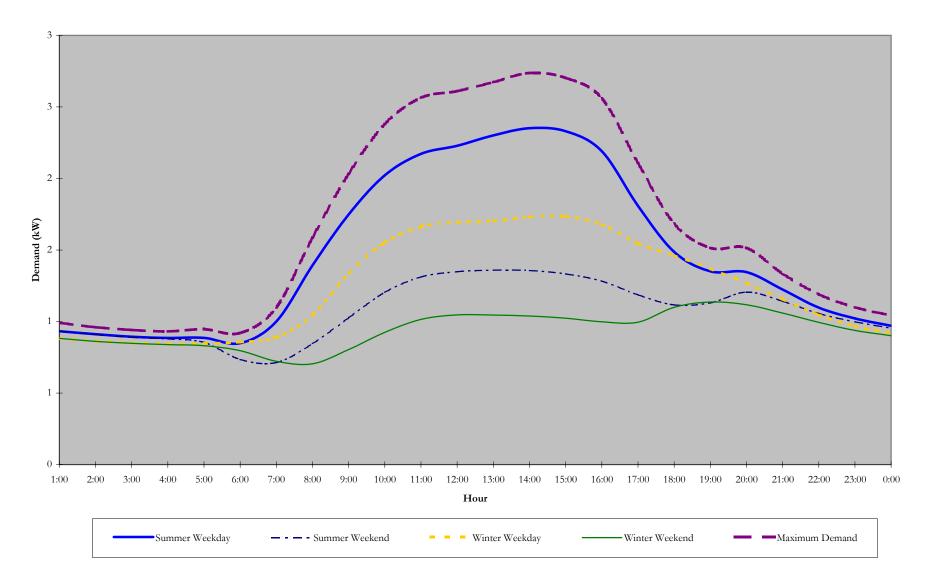
Southern California Edison Company has provided the above information at your request. The data presented here represents 12 months ending December, 2000. These estimates are provided for informational purposes only, and are not intended to, nor do they, predict what energy usage and loads within your city boundaries will be in the future. The actual future loads and energy consumption will vary from these estimates for a variety of reasons, including changes in energy usage, demand levels, and weather patterns. Southern California Edison Company assumes no liability for the use of the information provided above. If you have any questions regarding this information, please contact your Southern California Edison Company Account Representative.

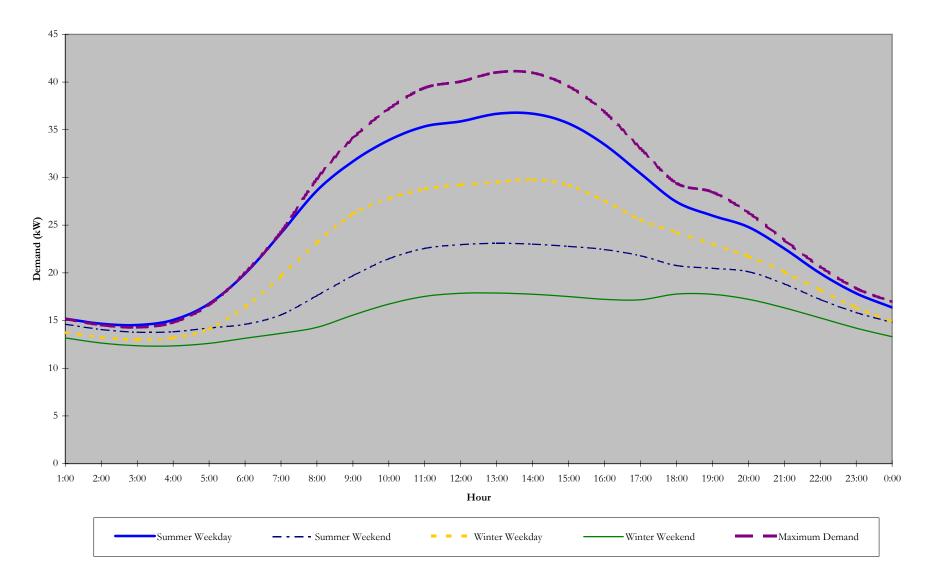


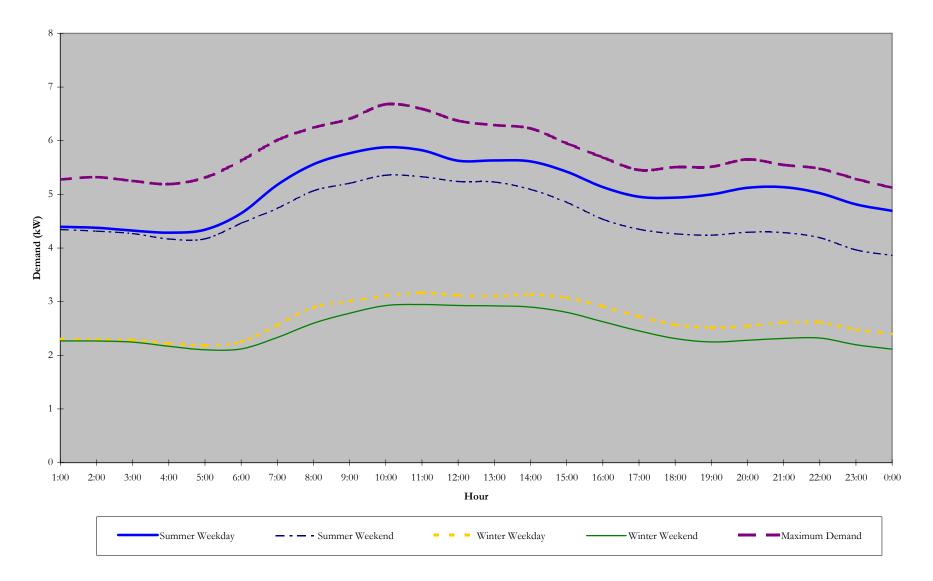

<u>Appendix A</u>

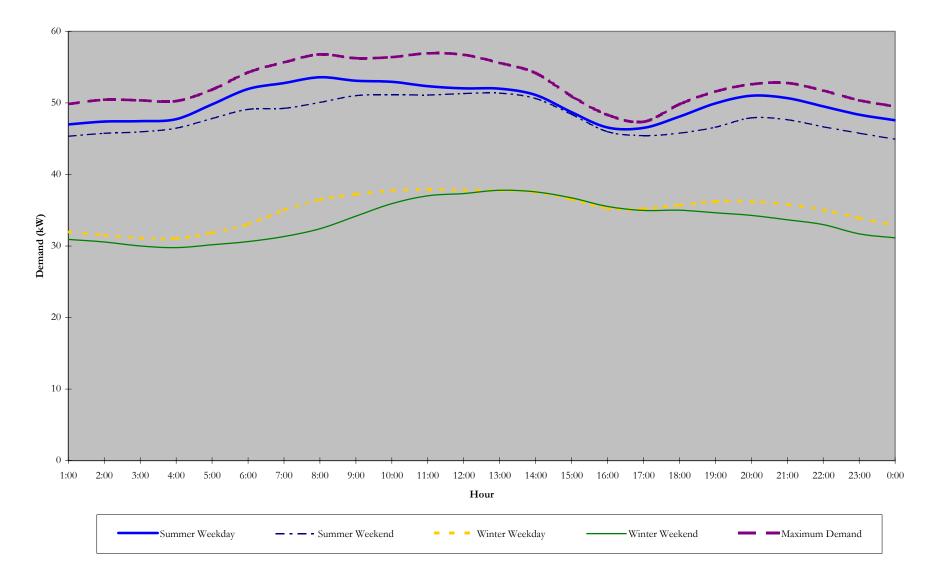

Rate Class Average Load Profiles


Rate Class Average Load Profiles TOU-Primary Rate Schedule

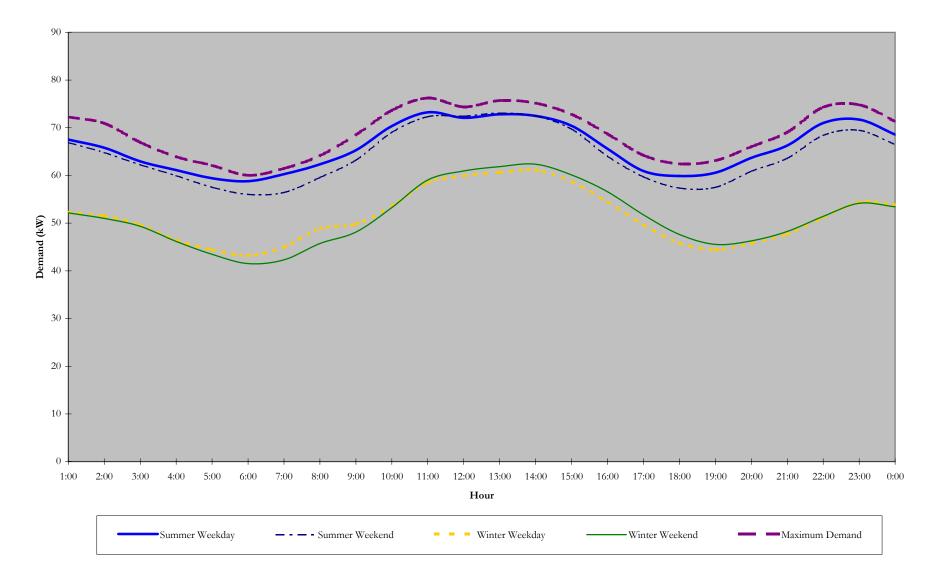


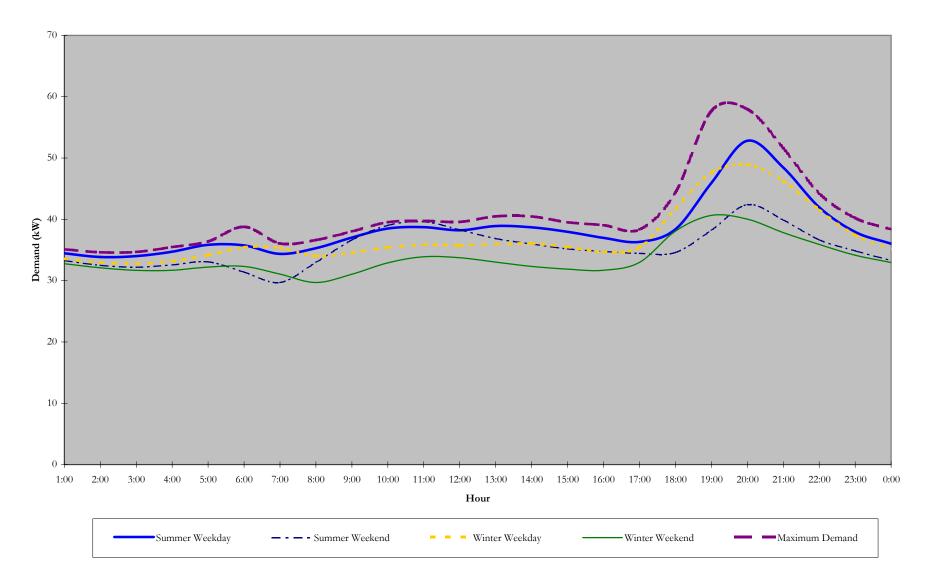

Rate Class Average Load Profiles TOU-Subtransmission Rate Schedule

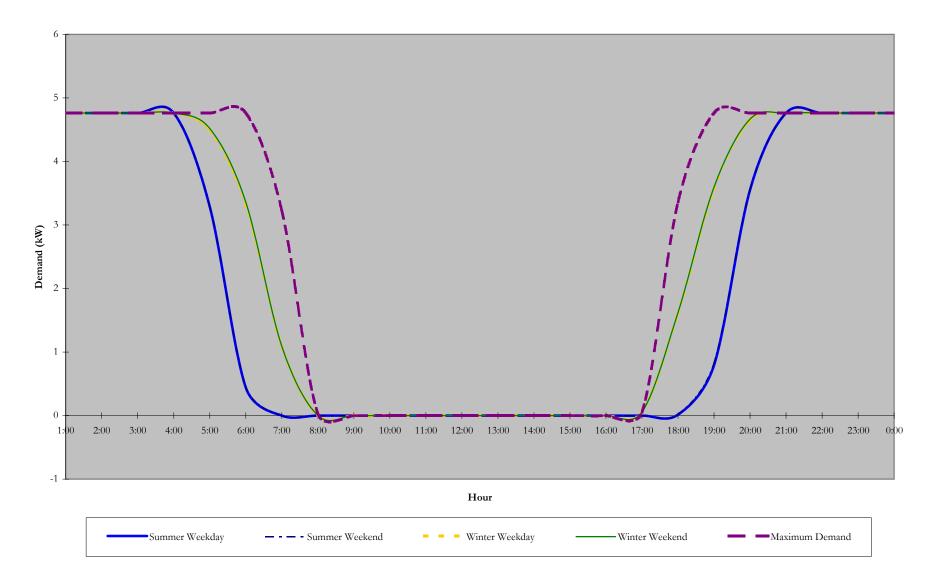

Rate Class Average Load Profile GS-1 Rate Schedule

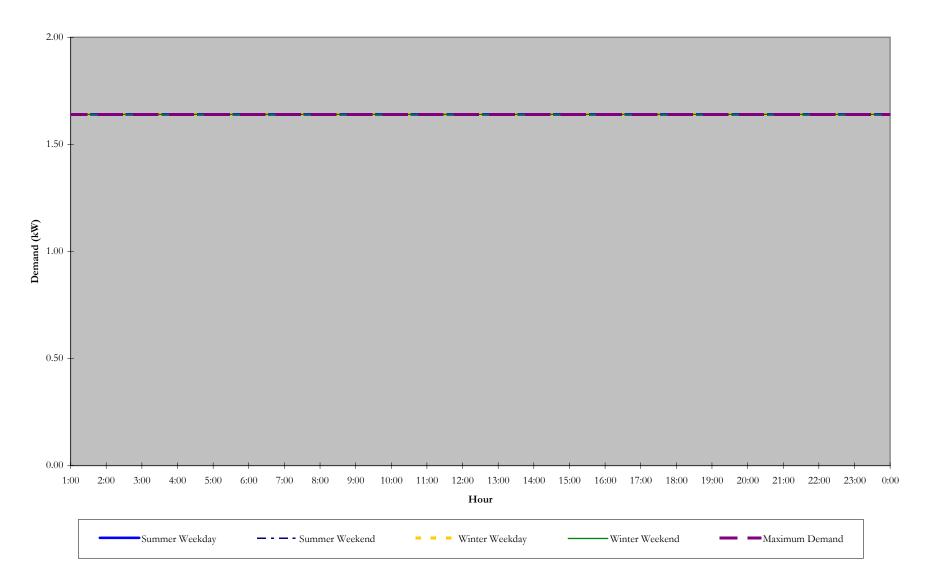

Rate Class Average Load Profiles GS-2 Rate Schedule

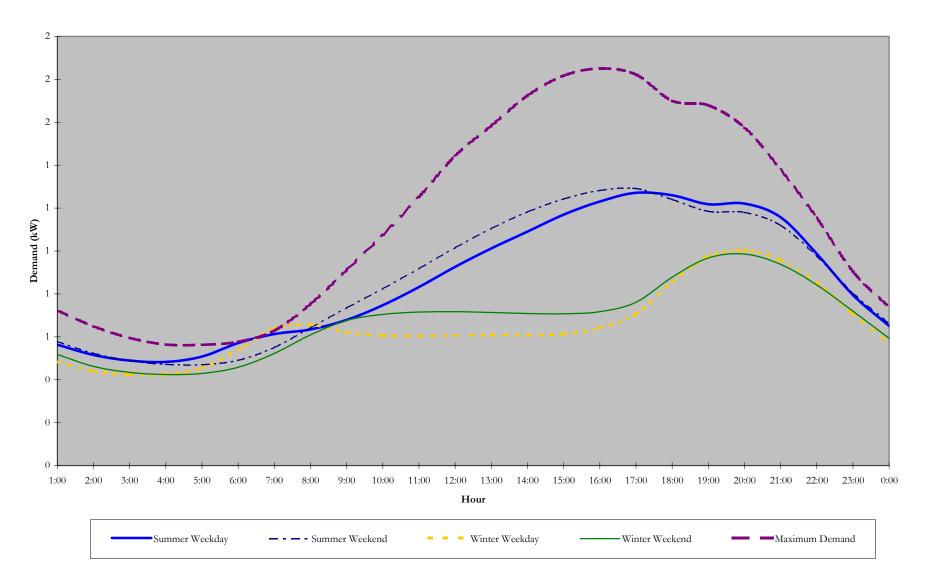

Rate Class Average Load Profiles PA-1 Rate Schedule


Rate Class Average Load Profiles PA-2 Rate Schedule


Rate Class Average Load Profiles AG-TOU Rate Schedule


Rate Class Average Load Profiles TOU-PA-5 Rate Schedule


Rate Class Average Load Profiles TOU-GS Rate Schedule


Rate Class Average Load Profiles Street Light Rate Schedules

Rate Class Average Load Profiles TC-1 Rate Schedule

Rate Class Average Load Profile Domestic Rate Schedule

Appendix B

Description of Rate Groups

Domestic (Domestic Service)

For all residential service including lighting, heating, cooking, and power or combination thereof in a single-family accommodation; also to domestic farm service when supplied through the farm operator's domestic meter.

GS-1 (General Service Non-Demand)

Includes single- and three-phase general service including lighting and power, except that the customer whose monthly maximum demand, in the opinion of SCE, is expected to exceed 20 kW or has exceeded 20 kW in any three months during the preceding 12 months.

GS-2 (General Service - Demand)

As of August 2006, includes single- and three-phase general service including lighting and power customers whose monthly maximum demand registers, or in the opinion of SCE is expected to register, above 20 kW and below 200 kW. In 2005, this rate group included customers with monthly maximum demands above 20 kW through 500 kW.

TOU-GS-3 (Time-Of-Use - General Service - Demand Metered)

As of August 2006, includes single- and three-phase general service including lighting and power customers whose monthly maximum demand registers, or in the opinion of SCE is expected to register, above 200 kW through 500 kW. This rate group did not exist in 2005 and these customers were included in the GS-2 rate group.

TOU-8 (Time-Of-Use - General Service – Large)

Includes general service, lighting and power, except agricultural water pumping accounts. This Schedule is mandatory for all customers whose monthly maximum demand, in the opinion of SCE, is expected to exceed 500 kW or has exceeded 500 kW in any three months during the preceding 12 months.

PA-1 (Power - Agricultural and Pumping Connected Load Basis)

Includes accounts where SCE determines that 70% or more of the customer's electrical usage is for general agricultural purposes or for general water or sewerage pumping and none of any remaining electrical usage is for purposes for which a domestic schedule is applicable.

PA-2 (Power - Agricultural and Pumping Demand Metered)

Includes accounts where SCE determines that 70% or more of the customer's electrical usage is for general agricultural purposes or for general water or sewerage pumping and none of any remaining electrical usage is for purposes for which a domestic schedule is

applicable. The Customer whose monthly Maximum Demand, in the opinion of SCE, is expected to, or has reached, 200 kW or above in any three months during the preceding 12 months shall have a Real Time Energy Meter (RTEM) or other type of interval meter installed and shall become ineligible for service under this Schedule. Upon such ineligibility a customer whose Maximum Demand is 500 kW or below shall be transferred to an applicable agricultural Time-of Use (TOU) rate schedule, while a customer whose Maximum Demand exceeds 500 kW will be transferred to Schedule TOU-8. However, in accordance with Schedule TOU-8, a large individual water agency or other large water pumping account with 70% or more of the water pumped used for agricultural purposes, must take service on a TOU agricultural class rate schedule.

TOU-PA-5 (Time-Of-Use Agricultural and Pumping - Demand Metered)

Includes accounts where SCE determines that: 70% or more of the customer's electrical usage is for general agricultural purposes or for general water or sewerage pumping or for oil pumping by customers with a Standard Industrial Classification (SIC) Code of 1311; none of any remaining electrical usage is for purposes for which a domestic schedule is applicable; and, the customer's account has 35 horsepower or more of total connected load or 35 kilowatts or more of Maximum Demand

AG TOU (Time-Of-Use Agricultural and Pumping - Demand Metered)

Includes accounts where SCE determines that: 70% or more of the customer's electrical usage is for water pumping used for agricultural purposes, except where the customer's monthly Maximum Demand, is expected to exceed 500 kW or has exceeded 500 kW for any three months during the preceding 12 months. These accounts are time-of-use agricultural and pumping accounts that do not qualify for the TOU-PA-5 tariff.

TC-1 (Traffic Control Service)

Includes single- and three-phase service: for traffic directional signs or traffic signal systems located on streets, highways and other public thoroughfares and to railway crossing and track signals; for public thoroughfare lighting that is utilized 24 hours per day or is not controlled by switching equipment, such as tunnel or underpass lighting; and, to public authorities for the illumination of bus stop shelters located in the dedicated road right-of-way where such service is combined with other traffic control service as defined above.

STREET LIGHTING (Lighting - Street and Highway Company-Owned System)

Includes service for the lighting of streets, highways, and publicly-owned and publiclyoperated automobile parking lots which are open to the general public where SCE owns and maintains the street lighting equipment and associated facilities included under this schedule.

Electricity Use Report For City of Palm Springs Year 2005

Prepared by

Southern California Edison

Version 5.0

October 4th, 2010

I. Introduction

The purpose of this report is to fulfill your request for overall energy consumption data for the City of Palm Springs. SCE has made every effort to fulfill this request. However, our legal responsibility of maintaining confidentiality of individual customer data limits us to providing only the following information:

- Rate group descriptions
- kWh consumption, and
- kW demand for those rate groups with demand meters (non-coincident and • coincident loads); no kW demand data is available for those rate groups that do not have demand metered data

II. **Energy and Demand Data Availability**

Rate group specific energy consumption data is readily available and included within this report. However, several of our rate schedules such as Schedule "D," the standard domestic rate, do not require the measurement of demand data. Therefore, coincident demand-related data within this report is only an estimate reflecting those rate groups where demand is measured. Table A summarizes the availability of demand data by rate group:

<u> Table A – Data Availability Table</u>						
Rate Groups with Demand Data	Rate Groups <i>without</i> Demand Data					

GS-2, PA-2, TOU-PA-5, AG TOU, TOU-GS-3, and TOU-8 Domestic, GS-1, PA1, TC-1 and Street Lighting

For rate groups *with* measured demand data, we have provided:

- Total kWh
- Non-coincident peak demand this is the sum of the individual accounts' maximum peak demands, regardless of when they occur
- Coincident peak demand this is a calculated field based on application of the coincidence factors outlined on page 3, section III
- Number of accounts •

For rate groups *without* measured demand data, we have provided:

- Total kWh .
- Number of accounts

III. <u>Coincidence Factors</u>

Coincidence factor is an indication of how closely the individual customer peaks conform to the time of the rate group peak. Coincidence factor is expressed as a proportion and can never be greater than 1.0. Table B lists coincidence factors based SCE system wide peak demands.

Table C on page 4 contains calculated values of coincident peak demand. To derive these values, the rate class non-coincident peak (Table C) is multiplied by its respective rate class coincidence factor, in Table B, yielding a calculated "Coincident Peak (kW)". The calculated coincident peaks approximate the maximum peak for each rate class.

	Coincidence Factor				Coincidence Factor		
Rate Group	Annual Summer Winter		Rate Group	Annual	Summer	Winter	
Domestic-Single	0.38	0.42	0.30	GS-1	0.46	0.52	0.41
Domestic-Multiple	0.26	0.32	0.24	TC-1	1.00	1.00	1.00
Domestic- Mstr Mtrd	0.61	0.66	0.56	GS-2	0.71	0.74	0.70
				TOU-GS	0.53	0.54	0.58
Total Domestic	0.34	0.39	0.28	Total Sm and Med	0.61	0.65	0.60

Table B - System Coincidence Factors

	Coincidence Factor				Coincidence Factor		
Rate Group	Annual Summer Winter		Rate Group	Annual	Summer	Winter	
PA-1	0.40	0.44	0.34	TOU-8-Secondry	0.76	0.79	0.76
PA-2	0.65	0.70	0.63	TOU-8-Primary	0.70	0.74	0.70
AGTOU	0.62	0.67	0.54	TOU-8-Sub	0.67	0.71	0.68
Tou-PA-5	0.84	0.84	0.86				
Total AG&Pump	0.46	0.50	0.40	Total Large Power	0.70	0.74	0.71

IV. Data Description

The summaries provided in Tables C, are based on 12 months usage data ending December, 2005 for SCE installed service accounts within the city's boundaries. The accounts included in the dataset were extracted from SCE's Customer Service System based on the Public Authority Code for the City of Palm Springs. This code is used to identify accounts by municipality for the purpose of calculating state and local taxes. Public Authority Code is permanently retained as a part of each premise's identification regardless of occupancy. The only time a Public Authority Code changes is when a city or county annexes a given piece of property into its territory or a particular piece of property is transferred from one public authority to another through other means.

V. Summary of Results (January 1, 2005 – December 31, 2005)

					NUMBER	
				CALCULATED	OF	
			NONCOINCIDENT	COINCIDENT	ACCOUNT	% OF
RATE GROUP	ANNUAL KWH	% of TOTAL	PEAK	PEAK	S	TOTAL
AG TOU	35,688,494	5.7%	9,380	5,815	53	0.15%
DOMESTIC	293,435,747	46.9%	-	-	30,633	86.18%
GS-1	50,920,334	8.1%	-	-	3,825	10.76%
GS-2	121,808,274	19.5%	41,345	29,355	976	2.75%
TOU-8	123,993,582	19.8%	30,167	21,117	60	0.17%
Grand Total	625,846,431				35,547	
DA % of kWh	5.5%					

Table C – Total of Account Summary Data for Bundled and Direct Access Customers

Application of 15/15 Rule (Section VIII. Release of Aggregated Customer Information, p. 6) The PA-1, and PA-2 rate classes were combined into the AG TOU rate group.

Street Lighting and Traffic Control information were not included because SCE database do not keep track of this Information dated back more than 4 years.

VI. Additional Data Availability

The data listed in Tables C are at a summary level, and are not displayed by time-of-use. For your convenience we have attached time-of-use load profiles (Appendix A) for each rate class. In the event that you would like the detailed data that supports these load profiles (annual hourly load data for each rate class average profile), you can find it on SCE's website at the following address:

http://www.sce.com/AboutSCE/Regulatory/loadprofiles/

Additionally, revenue impacts are often part of an overall economic analysis related to energy consumption. In the event that you would like specific rate schedules, you can find them at the following web address:

http://www.sce.com/AboutSCE/Regulatory/tariffbooks/ratespricing/

VII. Public Goods Charge Energy Efficiency Funds

SCE estimated the City of Palm Springs's proportional share of Public Goods Charge (PGC) funded energy efficiency activities that the California Public Utilities Commission might make available to the customers in the City of Palm Springs if it became a community choice aggregator ("CCA") but did not implement energy efficiency programs in the CCA territory. SCE performed the estimated proportional share calculation in accordance with the directives of Decision (D.) 03-07-034 of the California Public Utilities Commission, and determined that the City of Palm Springs's estimated proportional share is \$ 317,665. Please note that the estimated proportional share calculation does not necessarily represent an amount of funds that would be made available for energy efficiency programs in the City of Palm Springs's territory should the City of Palm Springs become a CCA. As stated in D.03-07-034, the proportional share calculation is only used to estimate non-CCA expenditures in a CCA's territory. Also note that the proportional share estimate is not equal to the amount of PGC funds collected from ratepayers in the City of Palm Springs, since the PGC rate includes authorized amounts for energy efficiency as well as other public interest programs.

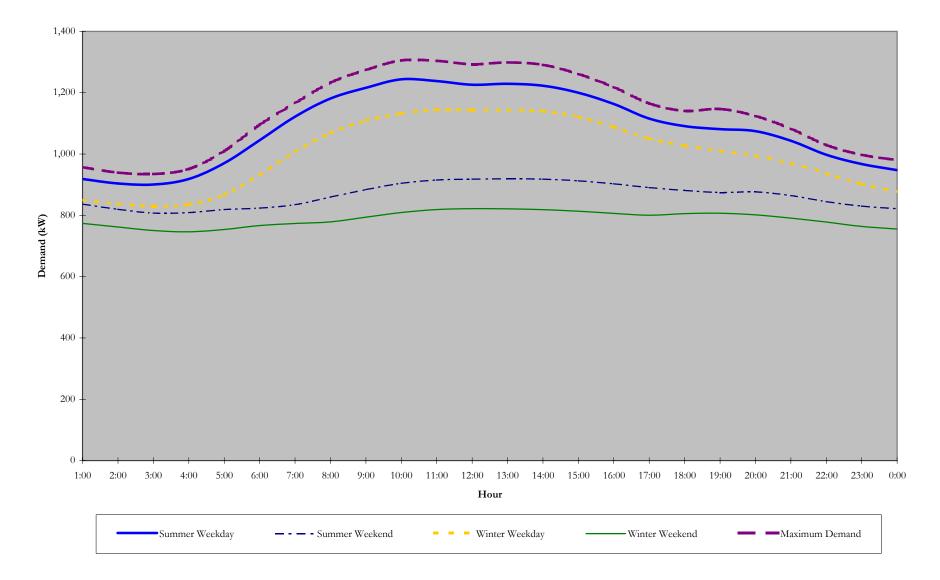
VIII. <u>Release of Aggregated Customer Information</u>

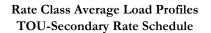
The 15/15 Rule is intended to protect customer confidentiality by reducing the possibility of identifying customers through the release of usage information. SCE will apply the 15/15 Rule in releasing aggregated customer information. The rule was initially implemented by the California Public Utilities Commission during Direct Access proceedings in 1997 and was adopted through D. 97-10-031.

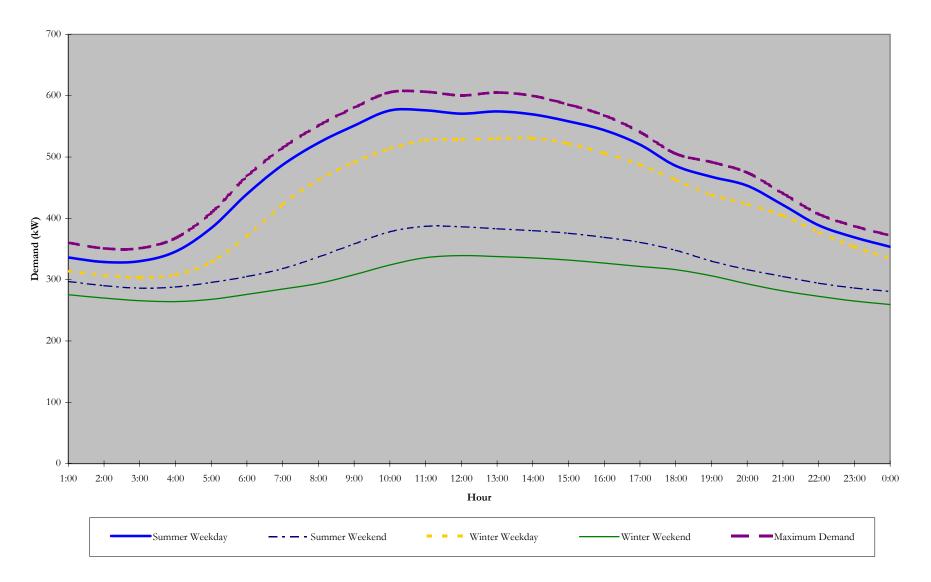
The 15/15 rule requires that any aggregated information provided by the Utilities must be made up of at least 15 customers, and a customer's load must be less than 15% of an assigned category. If the number of customers in the compiled data is below 15, or if a single customer's load is more than 15% of the total data, categories (e.g., rate classes) must be combined before the information is released. The rule further requires that if the 15/15 rule is triggered for a second tie after the data has been screened once already using the 15/15 rule, then the customer is dropped from the information provided.

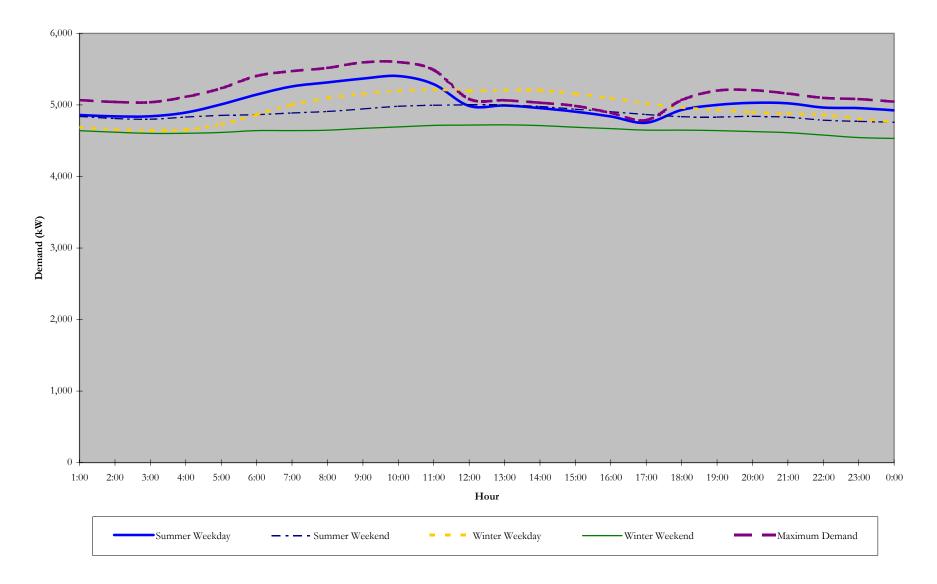
IX. <u>Disclaimer</u>

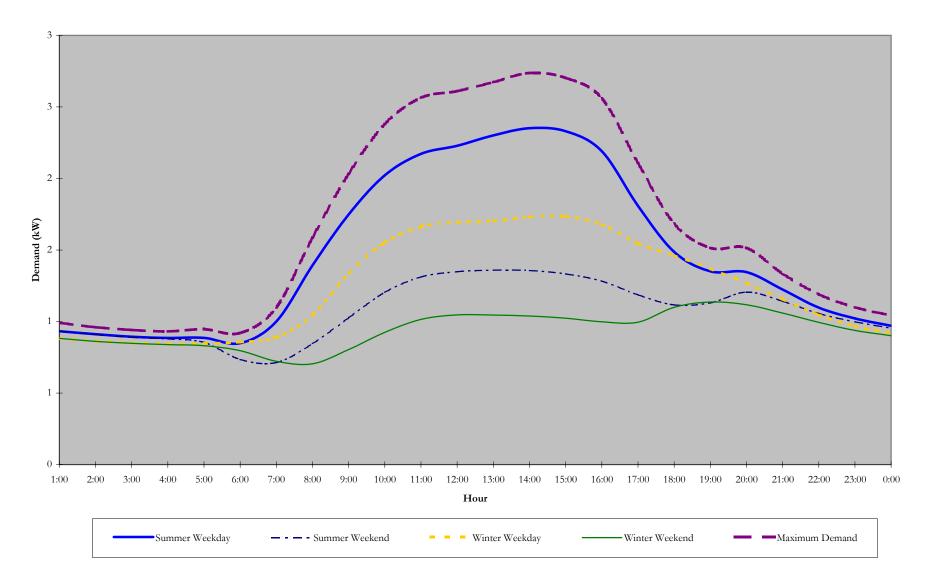
Southern California Edison Company has provided the above information at your request. The data presented here represents 12 months ending December, 2005. These estimates are provided for informational purposes only, and are not intended to, nor do they, predict what energy usage and loads within your city boundaries will be in the future. The actual future loads and energy consumption will vary from these estimates for a variety of reasons, including changes in energy usage, demand levels, and weather patterns. Southern California Edison Company assumes no liability for the use of the information provided above. If you have any questions regarding this information, please contact your Southern California Edison Company Account Representative.

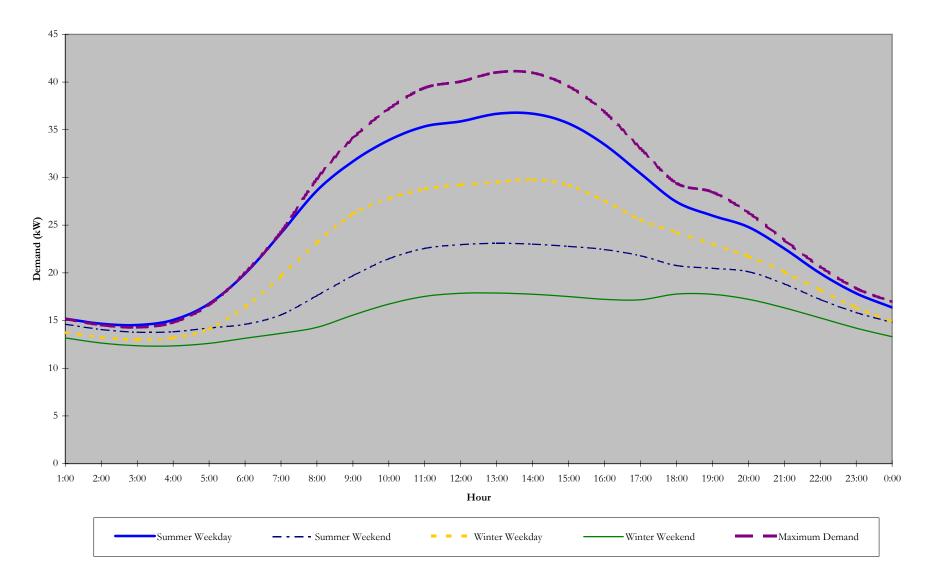


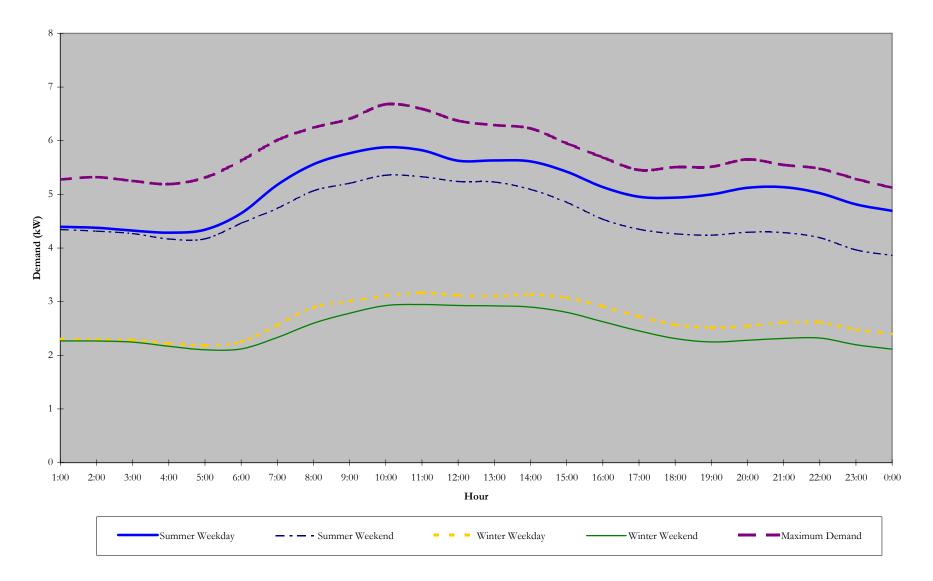

<u>Appendix A</u>

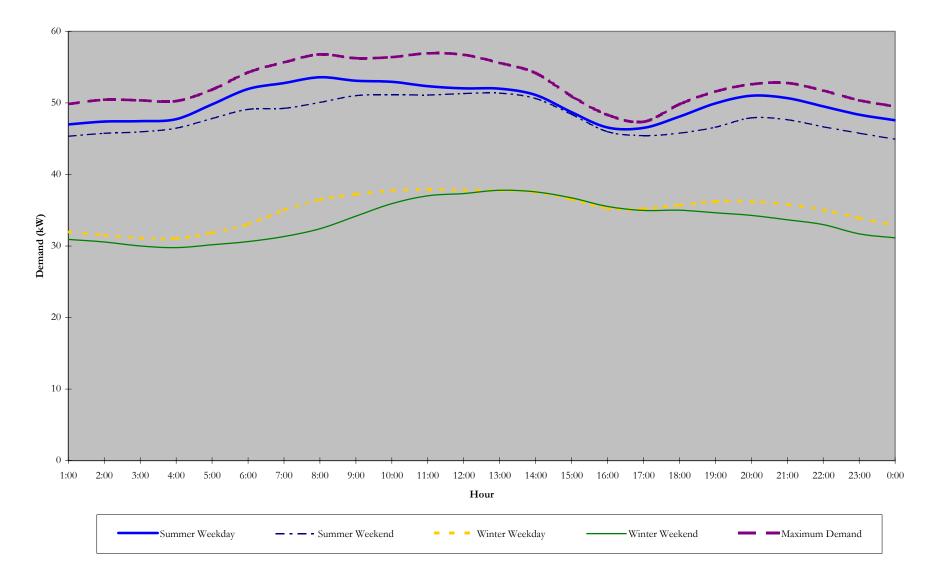

Rate Class Average Load Profiles


Rate Class Average Load Profiles TOU-Primary Rate Schedule

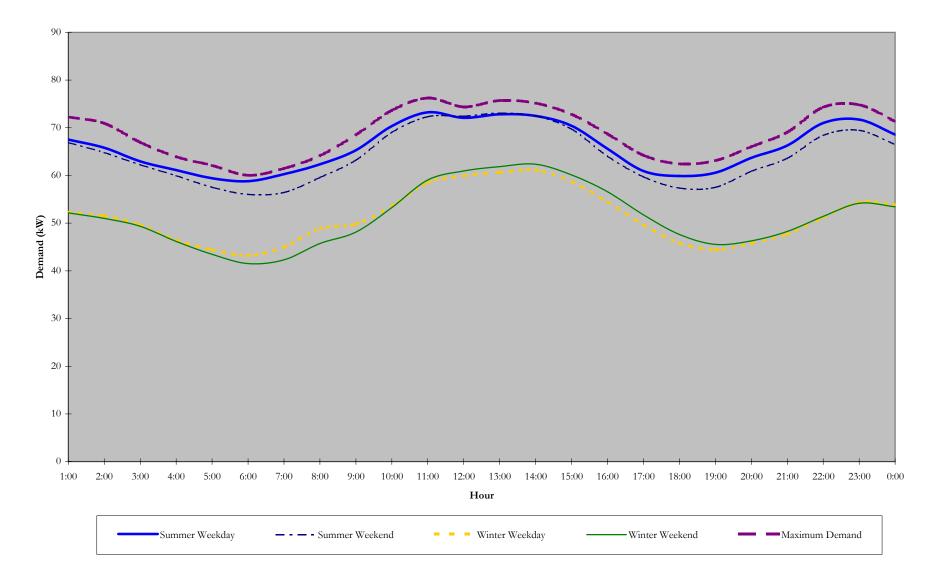


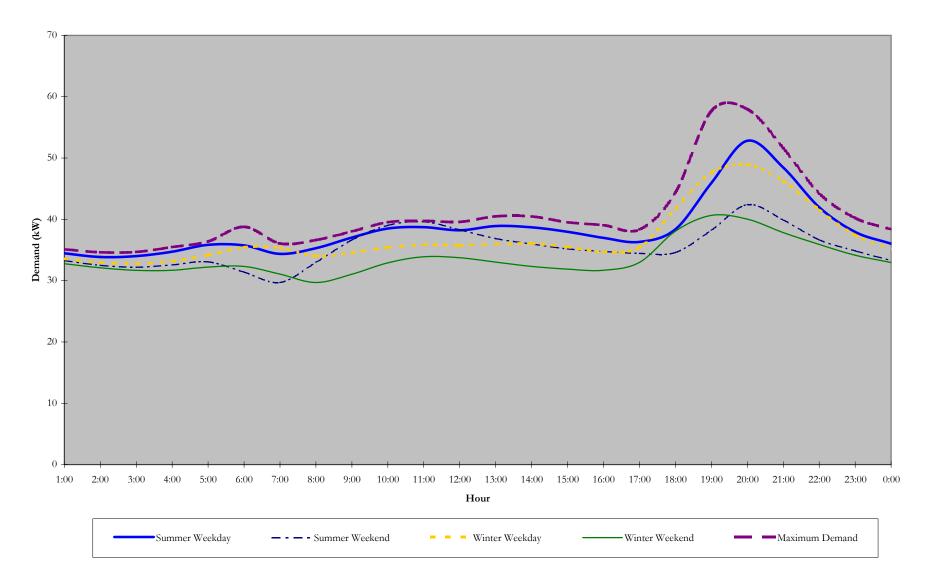

Rate Class Average Load Profiles TOU-Subtransmission Rate Schedule

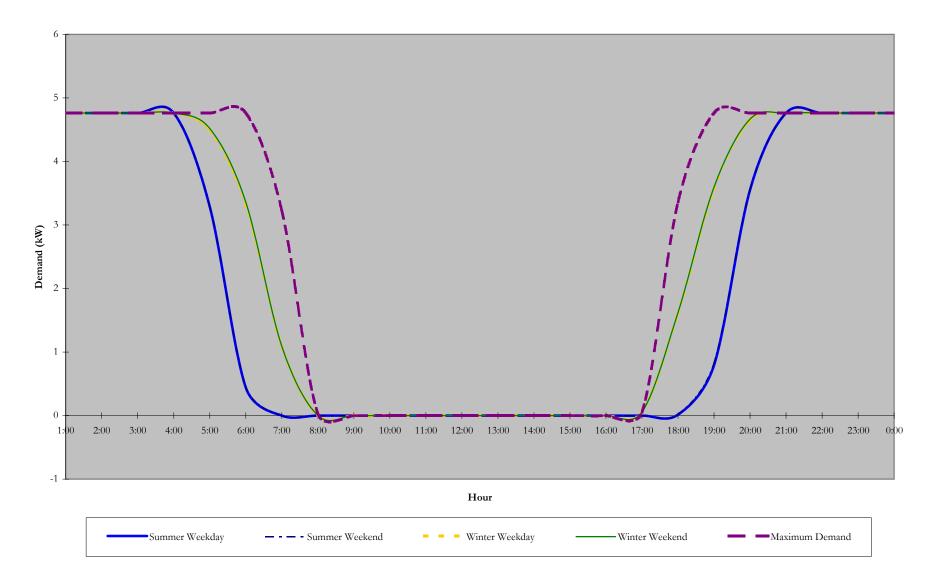

Rate Class Average Load Profile GS-1 Rate Schedule

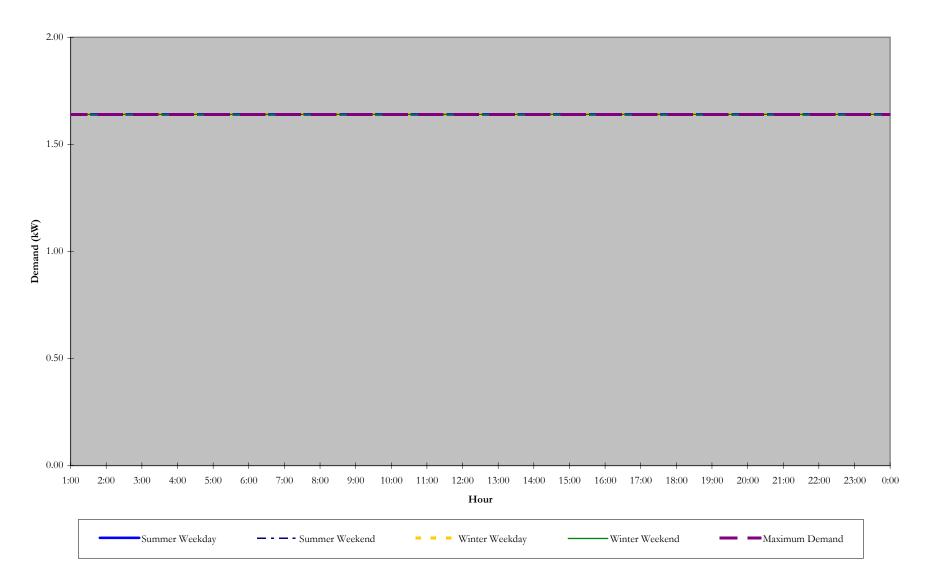

Rate Class Average Load Profiles GS-2 Rate Schedule

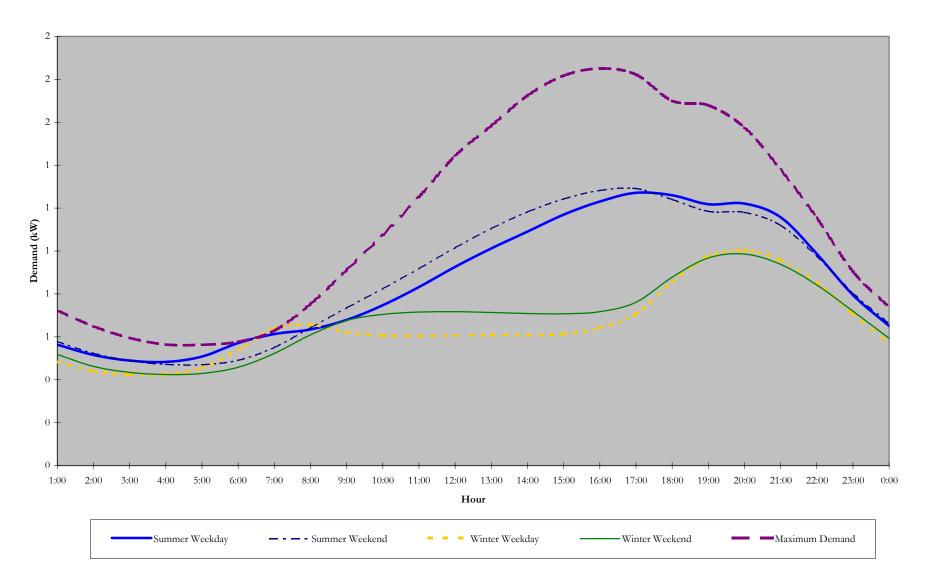

Rate Class Average Load Profiles PA-1 Rate Schedule


Rate Class Average Load Profiles PA-2 Rate Schedule


Rate Class Average Load Profiles AG-TOU Rate Schedule


Rate Class Average Load Profiles TOU-PA-5 Rate Schedule


Rate Class Average Load Profiles TOU-GS Rate Schedule


Rate Class Average Load Profiles Street Light Rate Schedules

Rate Class Average Load Profiles TC-1 Rate Schedule

Rate Class Average Load Profile Domestic Rate Schedule

Appendix B

Description of Rate Groups

Domestic (Domestic Service)

For all residential service including lighting, heating, cooking, and power or combination thereof in a single-family accommodation; also to domestic farm service when supplied through the farm operator's domestic meter.

GS-1 (General Service Non-Demand)

Includes single- and three-phase general service including lighting and power, except that the customer whose monthly maximum demand, in the opinion of SCE, is expected to exceed 20 kW or has exceeded 20 kW in any three months during the preceding 12 months.

GS-2 (General Service - Demand)

As of August 2006, includes single- and three-phase general service including lighting and power customers whose monthly maximum demand registers, or in the opinion of SCE is expected to register, above 20 kW and below 200 kW. In 2005, this rate group included customers with monthly maximum demands above 20 kW through 500 kW.

TOU-GS-3 (Time-Of-Use - General Service - Demand Metered)

As of August 2006, includes single- and three-phase general service including lighting and power customers whose monthly maximum demand registers, or in the opinion of SCE is expected to register, above 200 kW through 500 kW. This rate group did not exist in 2005 and these customers were included in the GS-2 rate group.

TOU-8 (Time-Of-Use - General Service – Large)

Includes general service, lighting and power, except agricultural water pumping accounts. This Schedule is mandatory for all customers whose monthly maximum demand, in the opinion of SCE, is expected to exceed 500 kW or has exceeded 500 kW in any three months during the preceding 12 months.

PA-1 (Power - Agricultural and Pumping Connected Load Basis)

Includes accounts where SCE determines that 70% or more of the customer's electrical usage is for general agricultural purposes or for general water or sewerage pumping and none of any remaining electrical usage is for purposes for which a domestic schedule is applicable.

PA-2 (Power - Agricultural and Pumping Demand Metered)

Includes accounts where SCE determines that 70% or more of the customer's electrical usage is for general agricultural purposes or for general water or sewerage pumping and none of any remaining electrical usage is for purposes for which a domestic schedule is

applicable. The Customer whose monthly Maximum Demand, in the opinion of SCE, is expected to, or has reached, 200 kW or above in any three months during the preceding 12 months shall have a Real Time Energy Meter (RTEM) or other type of interval meter installed and shall become ineligible for service under this Schedule. Upon such ineligibility a customer whose Maximum Demand is 500 kW or below shall be transferred to an applicable agricultural Time-of Use (TOU) rate schedule, while a customer whose Maximum Demand exceeds 500 kW will be transferred to Schedule TOU-8. However, in accordance with Schedule TOU-8, a large individual water agency or other large water pumping account with 70% or more of the water pumped used for agricultural purposes, must take service on a TOU agricultural class rate schedule.

TOU-PA-5 (Time-Of-Use Agricultural and Pumping - Demand Metered)

Includes accounts where SCE determines that: 70% or more of the customer's electrical usage is for general agricultural purposes or for general water or sewerage pumping or for oil pumping by customers with a Standard Industrial Classification (SIC) Code of 1311; none of any remaining electrical usage is for purposes for which a domestic schedule is applicable; and, the customer's account has 35 horsepower or more of total connected load or 35 kilowatts or more of Maximum Demand

AG TOU (Time-Of-Use Agricultural and Pumping - Demand Metered)

Includes accounts where SCE determines that: 70% or more of the customer's electrical usage is for water pumping used for agricultural purposes, except where the customer's monthly Maximum Demand, is expected to exceed 500 kW or has exceeded 500 kW for any three months during the preceding 12 months. These accounts are time-of-use agricultural and pumping accounts that do not qualify for the TOU-PA-5 tariff.

TC-1 (Traffic Control Service)

Includes single- and three-phase service: for traffic directional signs or traffic signal systems located on streets, highways and other public thoroughfares and to railway crossing and track signals; for public thoroughfare lighting that is utilized 24 hours per day or is not controlled by switching equipment, such as tunnel or underpass lighting; and, to public authorities for the illumination of bus stop shelters located in the dedicated road right-of-way where such service is combined with other traffic control service as defined above.

STREET LIGHTING (Lighting - Street and Highway Company-Owned System)

Includes service for the lighting of streets, highways, and publicly-owned and publiclyoperated automobile parking lots which are open to the general public where SCE owns and maintains the street lighting equipment and associated facilities included under this schedule.

Electricity Use Report For City of Palm Springs Year 2008

Prepared by

Southern California Edison

Version 5.0

October 4th, 2010

I. Introduction

The purpose of this report is to fulfill your request for overall energy consumption data for the City of Palm Springs. SCE has made every effort to fulfill this request. However, our legal responsibility of maintaining confidentiality of individual customer data limits us to providing only the following information:

- Rate group descriptions
- kWh consumption, and
- kW demand for those rate groups with demand meters (non-coincident and • coincident loads); no kW demand data is available for those rate groups that do not have demand metered data

II. **Energy and Demand Data Availability**

Rate group specific energy consumption data is readily available and included within this report. However, several of our rate schedules such as Schedule "D," the standard domestic rate, do not require the measurement of demand data. Therefore, coincident demand-related data within this report is only an estimate reflecting those rate groups where demand is measured. Table A summarizes the availability of demand data by rate group:

<u> Table A – Data Availability Table</u>							
Rate Groups with Demand Data	Rate Groups <i>without</i> Demand Data						

GS-2, PA-2, TOU-PA-5, AG TOU, TOU-GS-3, and TOU-8 Domestic, GS-1, PA1, TC-1 and Street Lighting

For rate groups *with* measured demand data, we have provided:

- Total kWh
- Non-coincident peak demand this is the sum of the individual accounts' maximum peak demands, regardless of when they occur
- Coincident peak demand this is a calculated field based on application of the coincidence factors outlined on page 3, section III
- Number of accounts •

For rate groups *without* measured demand data, we have provided:

- Total kWh .
- Number of accounts

III. <u>Coincidence Factors</u>

Coincidence factor is an indication of how closely the individual customer peaks conform to the time of the rate group peak. Coincidence factor is expressed as a proportion and can never be greater than 1.0. Table B lists coincidence factors based SCE system wide peak demands.

Table C on page 4 contains calculated values of coincident peak demand. To derive these values, the rate class non-coincident peak (Table C) is multiplied by its respective rate class coincidence factor, in Table B, yielding a calculated "Coincident Peak (kW)". The calculated coincident peaks approximate the maximum peak for each rate class.

	Coincidence Factor				Coincidence Factor		
Rate Group	Annual Summer Winter		Rate Group	Annual Summer Winte		Winter	
Domestic-Single	0.38	0.42	0.30	GS-1	0.46	0.52	0.41
Domestic-Multiple	0.26	0.32	0.24	TC-1	1.00	1.00	1.00
Domestic- Mstr Mtrd	0.61	0.66	0.56	GS-2	0.71	0.74	0.70
				TOU-GS	0.53	0.54	0.58
Total Domestic	0.34	0.39	0.28	Total Sm and Med	0.61	0.65	0.60

Table B - System Coincidence Factors

	Coincidence Factor				Coincidence Factor		
Rate Group	Annual Summer Winter		Rate Group	Annual Summer Winte		Winter	
PA-1	0.40	0.44	0.34	TOU-8-Secondry	0.76	0.79	0.76
PA-2	0.65	0.70	0.63	TOU-8-Primary	0.70	0.74	0.70
AGTOU	0.62	0.67	0.54	TOU-8-Sub	0.67	0.71	0.68
Tou-PA-5	0.84	0.84	0.86				
Total AG&Pump	0.46	0.50	0.40	Total Large Power	0.70	0.74	0.71

IV. Data Description

The summaries provided in Tables C, are based on 12 months usage data ending December, 2008 for SCE installed service accounts within the city's boundaries. The accounts included in the dataset were extracted from SCE's Customer Service System based on the Public Authority Code for the City of Palm Springs. This code is used to identify accounts by municipality for the purpose of calculating state and local taxes. Public Authority Code is permanently retained as a part of each premise's identification regardless of occupancy. The only time a Public Authority Code changes is when a city or county annexes a given piece of property into its territory or a particular piece of property is transferred from one public authority to another through other means.

V. Summary of Results (January 1, 2008 – December 31, 2008)

				CALCULATED		
			NONCOINCIDENT	COINCIDENT	NUMBER OF	
RATE GROUP	ANNUAL KWH	% of TOTAL	PEAK	PEAK	ACCOUNTS	% OF TOTAL
AG TOU	37,714,762	5.6%	10,329	6,404	59	0.2%
DOMESTIC	309,854,443	46.0%	-	-	31,865	85.4%
GS-1	53,263,907	7.9%	-	-	4,046	10.8%
GS-2	123,739,462	18.4%	39,119	27,774	1,005	2.7%
STREET LIGHTING	2,353,589	0.3%	-	-	256	0.7%
TOU-8	96,295,193	14.3%	20,816	14,571	21	0.1%
TOU-GS	49,727,200	7.4%	12,493	6,621	41	0.1%
Grand Total	672,948,556	[37,293	
DA % of kWh	5.4%	[

Table C – Total of Account Summary Data for Bundled and Direct Access Customers

<u>Application of 15/15 Rule (Section VIII. Release of Aggregated Customer Information, p. 6)</u> The PA-1 and PA-2 rate groups were combined into the AG TOU rate group.

VI. Additional Data Availability

The data listed in Tables C are at a summary level, and are not displayed by time-of-use. For your convenience we have attached time-of-use load profiles (Appendix A) for each rate class. In the event that you would like the detailed data that supports these load profiles (annual hourly load data for each rate class average profile), you can find it on SCE's website at the following address:

http://www.sce.com/AboutSCE/Regulatory/loadprofiles/

Additionally, revenue impacts are often part of an overall economic analysis related to energy consumption. In the event that you would like specific rate schedules, you can find them at the following web address:

http://www.sce.com/AboutSCE/Regulatory/tariffbooks/ratespricing/

VII. Public Goods Charge Energy Efficiency Funds

SCE estimated the City of Palm Springs's proportional share of Public Goods Charge (PGC) funded energy efficiency activities that the California Public Utilities Commission might make available to the customers in the City of Palm Springs if it became a community choice aggregator ("CCA") but did not implement energy efficiency programs in the CCA territory. SCE performed the estimated proportional share calculation in accordance with the directives of Decision (D.) 03-07-034 of the California Public Utilities Commission, and determined that the City of Palm Springs's estimated proportional share is \$ 317,665. Please note that the estimated proportional share calculation does not necessarily represent an amount of funds that would be made available for energy efficiency programs in the City of Palm Springs's territory should the City of Palm Springs become a CCA. As stated in D.03-07-034, the proportional share calculation is only used to estimate non-CCA expenditures in a CCA's territory. Also note that the proportional share estimate is not equal to the amount of PGC funds collected from ratepayers in the City of Palm Springs, since the PGC rate includes authorized amounts for energy efficiency as well as other public interest programs.

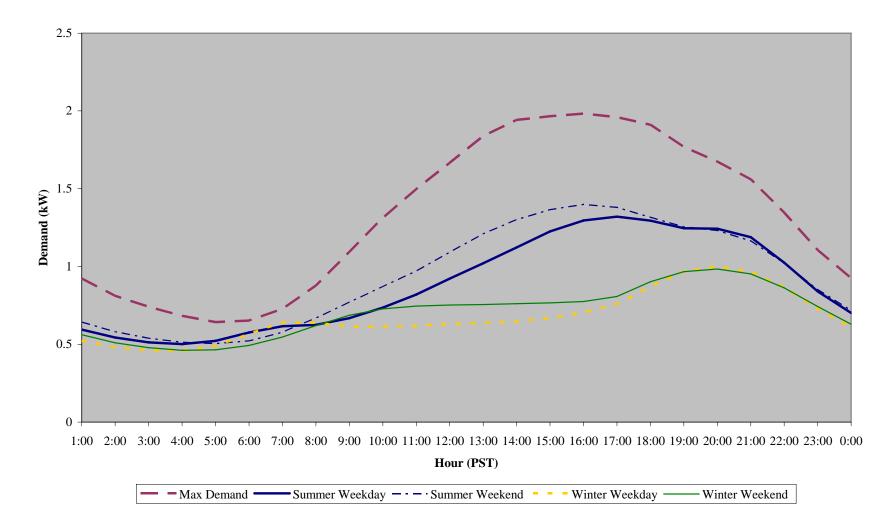
VIII. <u>Release of Aggregated Customer Information</u>

The 15/15 Rule is intended to protect customer confidentiality by reducing the possibility of identifying customers through the release of usage information. SCE will apply the 15/15 Rule in releasing aggregated customer information. The rule was initially implemented by the California Public Utilities Commission during Direct Access proceedings in 1997 and was adopted through D. 97-10-031.

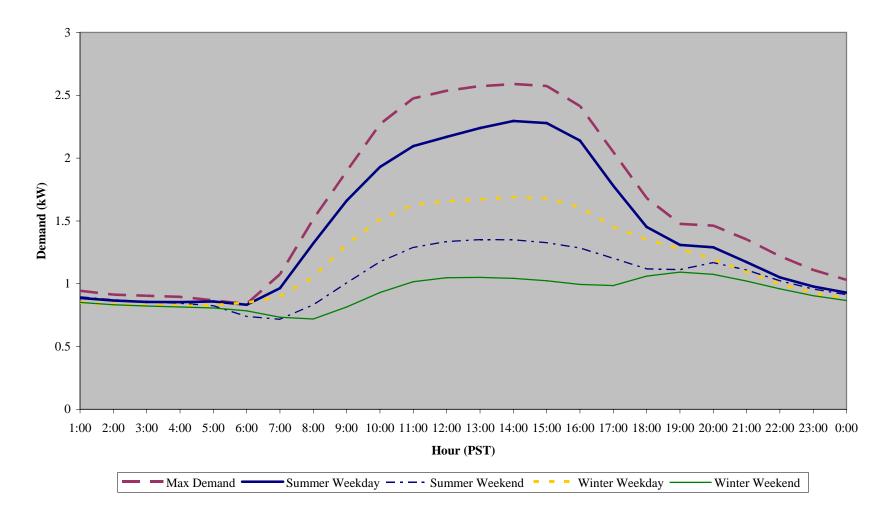
The 15/15 rule requires that any aggregated information provided by the Utilities must be made up of at least 15 customers, and a customer's load must be less than 15% of an assigned category. If the number of customers in the compiled data is below 15, or if a single customer's load is more than 15% of the total data, categories (e.g., rate classes) must be combined before the information is released. The rule further requires that if the 15/15 rule is triggered for a second tie after the data has been screened once already using the 15/15 rule, then the customer is dropped from the information provided.

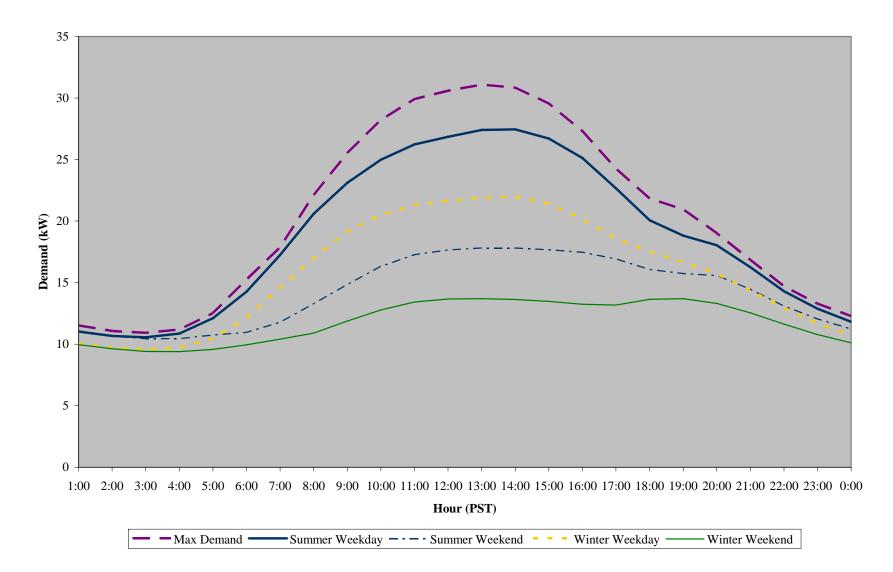
IX. <u>Disclaimer</u>

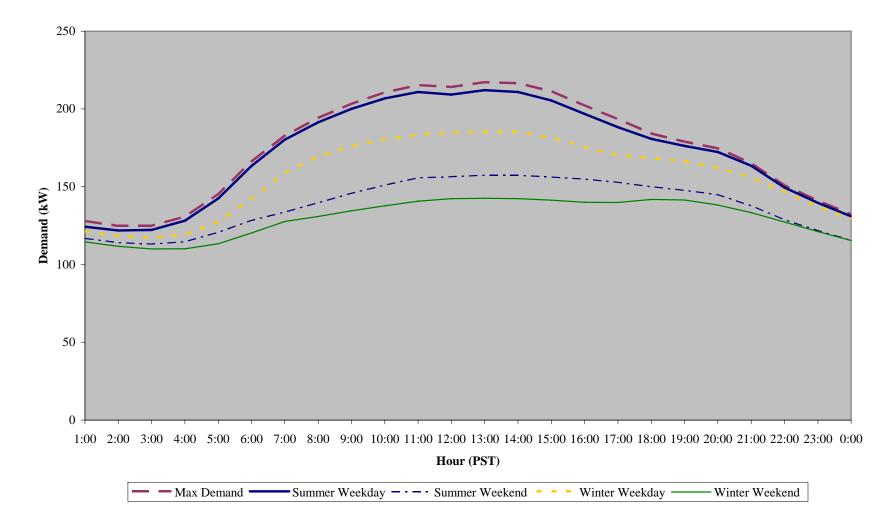
Southern California Edison Company has provided the above information at your request. The data presented here represents 12 months ending December, 2008. These estimates are provided for informational purposes only, and are not intended to, nor do they, predict what energy usage and loads within your city boundaries will be in the future. The actual future loads and energy consumption will vary from these estimates for a variety of reasons, including changes in energy usage, demand levels, and weather patterns. Southern California Edison Company assumes no liability for the use of the information provided above. If you have any questions regarding this information, please contact your Southern California Edison Company Account Representative.

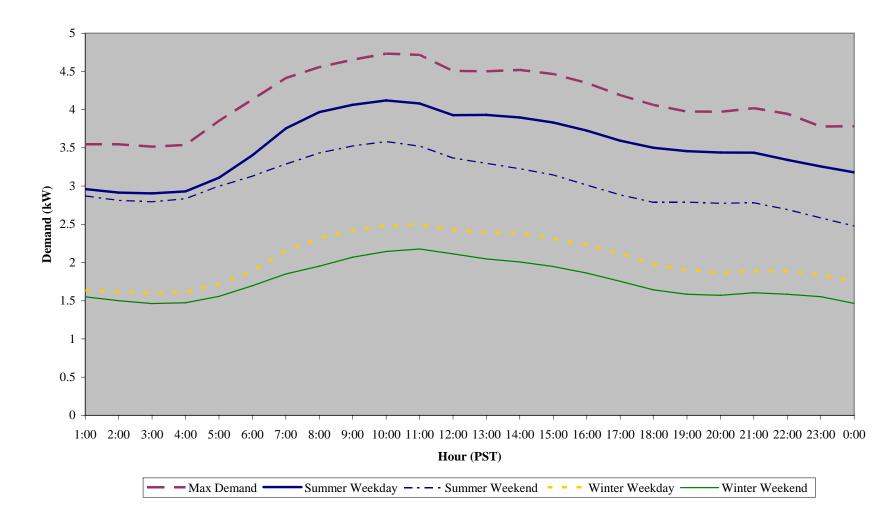


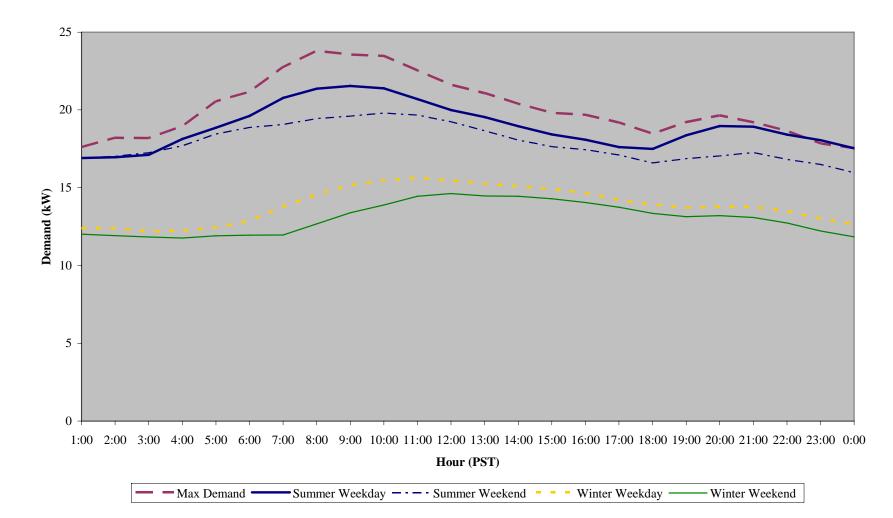
<u>Appendix A</u>

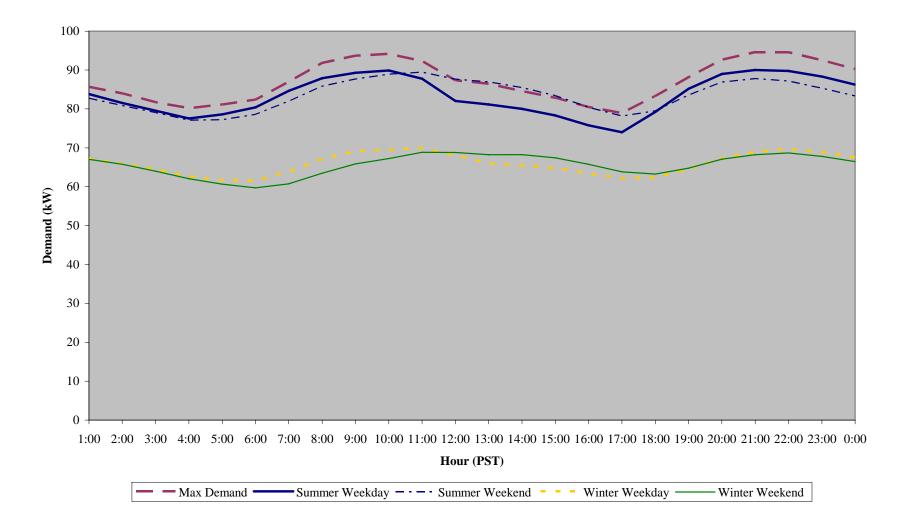

Rate Class Average Load Profiles

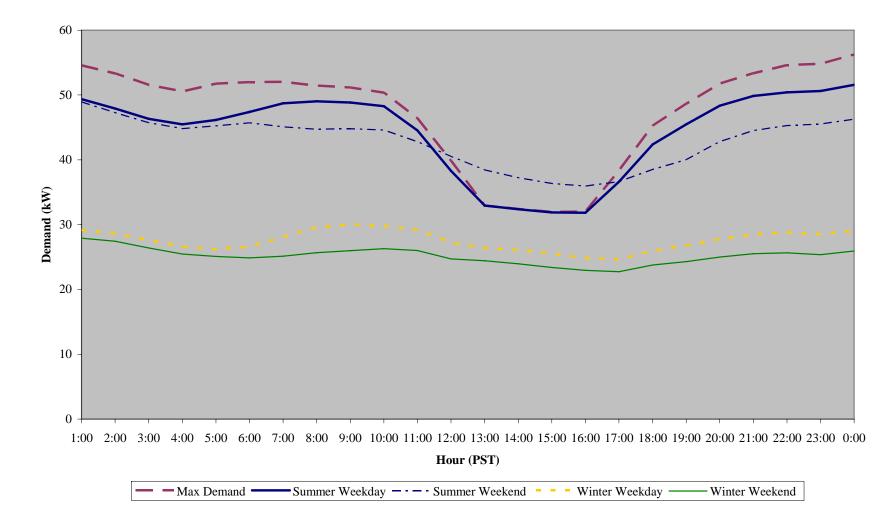

Rate Class Average Load Profiles Domestic Rate Group 2008

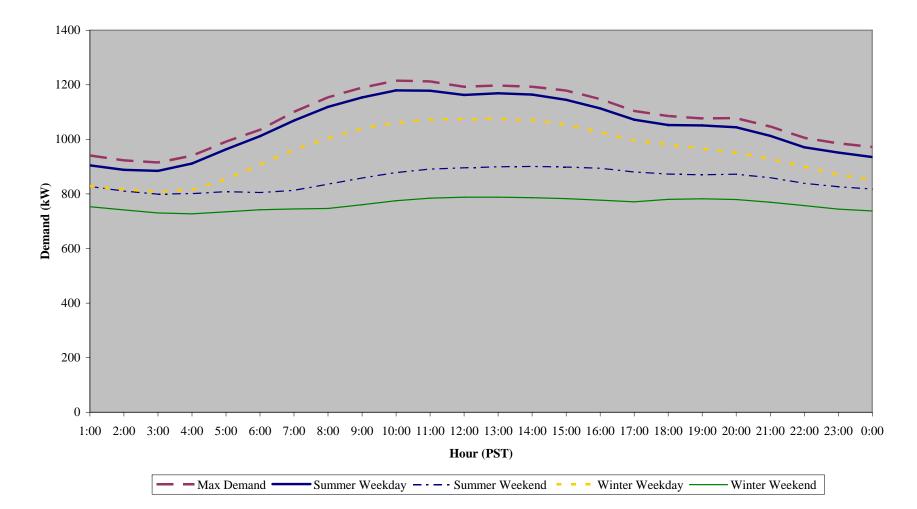

Rate Class Average Load Profiles GS-1 Rate Group 2008

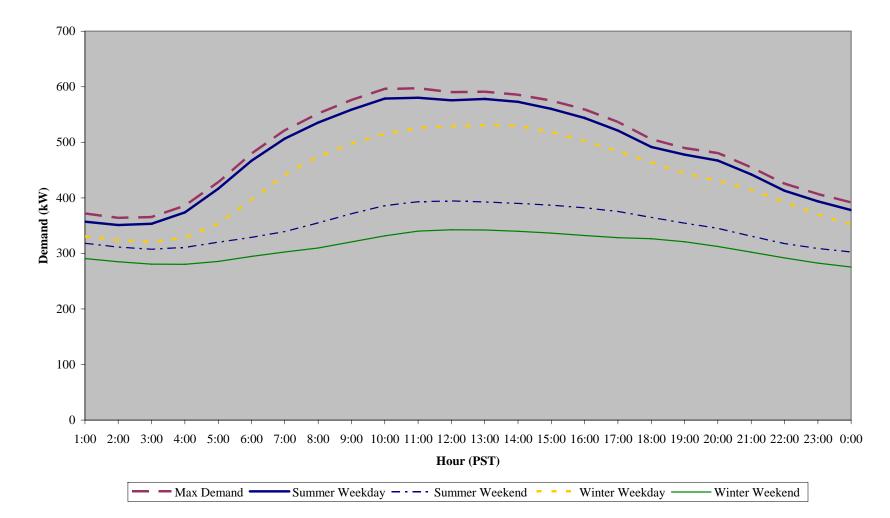

Rate Class Average Demand GS-2 Rate Group 2008

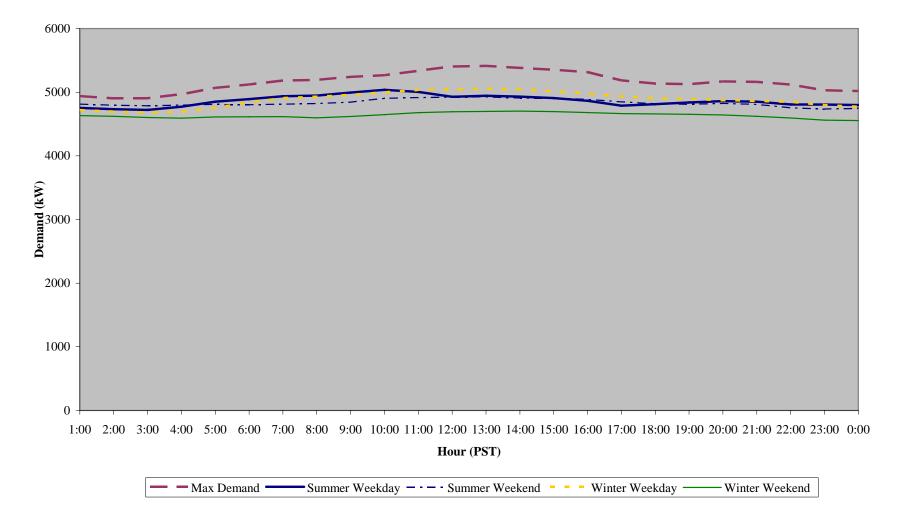

Rate Class Average Load Profiles TOU-GS Rate Groups 2008

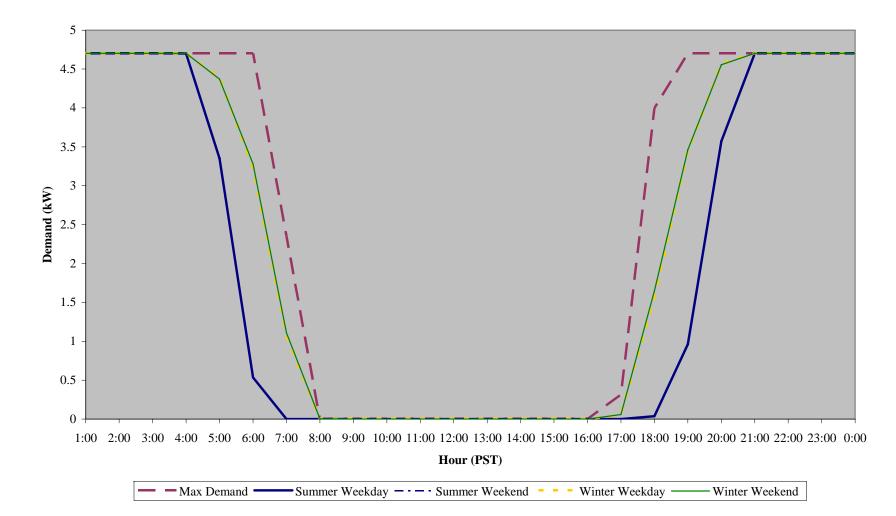

Rate Class Average Load Profiles PA-1 Rate Groups 2008

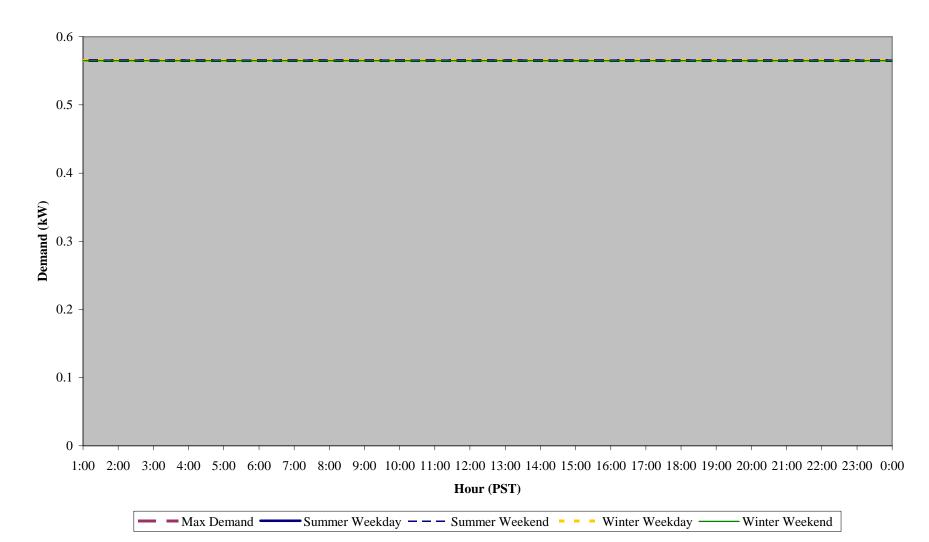

Rate Class Average Load Profiles PA-2 Rate Group 2008


Rate Class Average Load Profiles TOU-PA-5 Rate Group 2008


Rate Class Average Load Profile AG-TOU Rate Group 2008


Rate Class Average Load Profiles TOU-8-Primary Rate Group 2008


Rate Class Average Load Profiles TOU-8-Secondary Rate Group 2008


Rate Class Average Load Profiles TOU-8-Subtransmission Rate Group 2008

Rate Class Average Load Profiles Street Light Rate Group 2008

Rate Class Average Load Profiles TC-1 Rate Group 2008

<u>Appendix B</u>

Description of Rate Groups

Domestic (Domestic Service)

For all residential service including lighting, heating, cooking, and power or combination thereof in a single-family accommodation; also to domestic farm service when supplied through the farm operator's domestic meter.

GS-1 (General Service Non-Demand)

Includes single- and three-phase general service including lighting and power, except that the customer whose monthly maximum demand, in the opinion of SCE, is expected to exceed 20 kW or has exceeded 20 kW in any three months during the preceding 12 months.

GS-2 (General Service - Demand)

Includes single- and three-phase general service including lighting and power customers whose monthly maximum demand registers, or in the opinion of SCE is expected to register, above 20 kW and below 200 kW. The customer whose monthly maximum demand, in the opinion of SCE, is expected to exceed 200 kW or has exceeded 200 kW for any three months during the preceding 12 months is ineligible for service under this Schedule. Customers that exceed the 200 kW will be placed in TOU-GS rate class.

TOU-GS (Time-Of-Use - General Service - Demand Metered)

Includes single- and three-phase general service including lighting and power customers whose monthly maximum demand registers, or in the opinion of SCE is expected to register, above 200 kW through 500 kW. The customers whose monthly Maximum Demand, in the opinion of SCE, is expected to exceed 500 kW or has exceeded 500 kW for any three months during the preceding 12 months is ineligible for service under this Schedule.

TOU-8 (Time-Of-Use - General Service – Large)

Includes general service, lighting and power, except agricultural water pumping accounts. This Schedule is mandatory for all customers whose monthly maximum demand, in the opinion of SCE, is expected to exceed 500 kW or has exceeded 500 kW in any three months during the preceding 12 months.

PA-1 (Power - Agricultural and Pumping Connected Load Basis)

Includes accounts where SCE determines that 70% or more of the customer's electrical usage is for general agricultural purposes or for general water or sewerage pumping and none of any remaining electrical usage is for purposes for which a domestic schedule is applicable.

PA-2 (Power - Agricultural and Pumping Demand Metered)

Includes accounts where SCE determines that 70% or more of the customer's electrical usage is for general agricultural purposes or for general water or sewerage pumping and none of any remaining electrical usage is for purposes for which a domestic schedule is applicable. The Customer whose monthly Maximum Demand, in the opinion of SCE, is expected to, or has reached, 200 kW or above in any three months during the preceding 12 months shall have a Real Time Energy Meter (RTEM) or other type of interval meter installed and shall become ineligible for service under this Schedule. Upon such ineligibility a customer whose Maximum Demand is 500 kW or below shall be transferred to an applicable agricultural Time-of Use (TOU) rate schedule, while a customer whose Maximum Demand exceeds 500 kW will be transferred to Schedule TOU-8. However, in accordance with Schedule TOU-8, a large individual water agency or other large water pumping account with 70% or more of the water pumped used for agricultural purposes, must take service on a TOU agricultural class rate schedule.

TOU-PA-5 (Time-Of-Use Agricultural and Pumping - Demand Metered)

Includes accounts where SCE determines that: 70% or more of the customer's electrical usage is for general agricultural purposes or for general water or sewerage pumping or for oil pumping by customers with a Standard Industrial Classification (SIC) Code of 1311; none of any remaining electrical usage is for purposes for which a domestic schedule is applicable; and, the customer's account has 35 horsepower or more of total connected load or 35 kilowatts or more of Maximum Demand

AG TOU (Time-Of-Use Agricultural and Pumping - Demand Metered)

Includes accounts where SCE determines that: 70% or more of the customer's electrical usage is for water pumping used for agricultural purposes, except where the customer's monthly Maximum Demand, is expected to exceed 500 kW or has exceeded 500 kW for any three months during the preceding 12 months. These accounts are time-of-use agricultural and pumping accounts that do not qualify for the TOU-PA-5 tariff.

TC-1 (Traffic Control Service)

Includes single- and three-phase service: for traffic directional signs or traffic signal systems located on streets, highways and other public thoroughfares and to railway crossing and track signals; for public thoroughfare lighting that is utilized 24 hours per day or is not controlled by switching equipment, such as tunnel or underpass lighting; and, to public authorities for the illumination of bus stop shelters located in the dedicated road right-of-way where such service is combined with other traffic control service as defined above.

<u>STREET LIGHTING</u> (Lighting - Street and Highway Company-Owned System)

Includes service for the lighting of streets, highways, and publicly-owned and publiclyoperated automobile parking lots which are open to the general public where SCE owns and maintains the street lighting equipment and associated facilities included under this schedule.

Appendix C: Southern California Association of Governments Letter

AUG 1 0 2010

RECEIVED

OF PALM SPRING

4/10/1

.0 6 2010

Mrchart .

6.8.10

SOUTHERN CALIFORNIA

ASSOCIATION of GOVERNMENTS

Main Office

818 West Seventh Street

12th Floor

Los Angeles, California

90017-3435

t (213) 236-1800 f (213) 236-1825

www.scag.ca.gov

Officers

President Larry McCallon, Highland

First Vice President Pam O'Connor, Santa Monica

Second Vice President Glen Becerra, Simi Valley

Executive/Administration Committee Chair

Larry McCallon, Highland

Policy Committee Chairs

Community, Economic and Human Development Bill Jahn, Big Bear Lake

Energy & Environment Margaret Clark, Rosemead

Transportation Greg Pettis, Cathedral City June 30, 2010

Mr. David H. Ready City Manager City Manager City of Palm Springs 3200 E. Tahquitz Canyon Way Palm Springs, CA 92262

RE: Sustainable Communities Strategy (SCS) Development

Dear Mr. Ready,

As you may be aware, SB 375 requires the Southern California Association of Governments (SCAG) to develop and finalize a Sustainable Communities Strategy (SCS) as part of the 2012 Regional Transportation Plan (RTP).

The intent of an SCS is to integrate planning elements of transportation, land use, and housing in order to meet the greenhouse gas (GHG) emissions reduction target set by the California Air Resources Board (ARB). SCAG is committed to developing an SCS through partnerships and collaboration, so that the completed plan embodies the region's collective vision for the future.

The purpose of this letter is to provide you with an overview of the SCS development process and upcoming collaboration opportunities. Specifically, it outlines the SCS outreach and development schedule, growth forecast figures, and forthcoming Local Sustainability Tool software. Contact information for SCAG staff available for assistance is provided at the conclusion of this letter.

Outreach and Development Schedule

Outreach and public participation will play a major part in the creation of the SCS. The purpose of the outreach program is to engage all stakeholders in the SCS planning process in order to secure broad support for the actions necessary to reduce GHG emissions.

Given that the SCS is an element of the 2012 RTP, its schedule for development and release will coincide with that of the transportation plan. The following is a schedule of major milestones:

June 2010 Present schedule and SCS development process to stakeholders; begin SCS outreach.

September 2010 California Air Resources Board issues final regional GHG emissions reduction targets.

December 2010 First round of SCS workshops with wide range of stakeholders. Refine preliminary scenarios using Local Sustainability Planning tool.

April 2011

Second round of outreach meetings with stakeholders to go over scenario results and findings from previous workshops and other input received from cities.

The Regional Council is comprised of 84 elected officials representing 189 cities, six counties, six County Transportation Commissions and a Tribal Government representative within Southern California.

August 2011	Informational workshops with local elected officials. These meetings will be used to discuss and receive input for developing the SCS.
November 2011	SCAG releases Draft 2012 RTP/SCS
January 2012	Public Hearings on Draft 2012 RTP/SCS
April 2012	SCAG Regional Council adopts Final 2012 RTP/SCS

Growth Forecast

To date, SCAG has engaged with local jurisdictions, counties and COGs to collect input to ensure an accurate dataset for 2008 and general plan-based growth forecasts in 2020 and 2035. After a series of workshops, briefings and one-on-one interviews designed to update the 2008 RTP growth forecast, SCAG used this data to support its GHG reduction target recommendation to ARB in May 2010.

The following is the input that we received from your jurisdiction:

	Population	Households	Employment	
Year 2008	47310	22314	36272	
Year 2020	52645	25737	43699	
Year 2035	59818	30469	52984	

City of Palm Springs city

Your local population, household and employment projections (shown above) will be the foundation from which we develop the final growth forecast that meets both State and Federal requirements.

SCAG recently convened a Panel of Experts to review the collective local input at the regional and county scales. Their findings indicated that local input forecasts are consistent with the forecast ranges in 2020. They did find, however, some imbalance between population and jobs in 2035. To remedy the imbalance, the panel recommended a reduction of about 200,000 jobs in 2035. SCAG staff will continue to work with subregions and local jurisdictions to make these adjustments. Please contact SCAG staff with any questions regarding your input.

Local Sustainability Planning Tool

One State requirement is for SCAG to develop a scenario planning tool that allows users to see the interaction between land use, vehicle miles traveled and greenhouse gas emissions. This is known as the Local Sustainability Planning Tool.

In July, you will receive a subsequent letter and packet that includes a copy of the Local Sustainability Planning Tool. We are providing each jurisdiction in our region with this GIS based tool, along with datasets consistent with the forecast data above. Using this tool, cities and counties can further refine the distribution of their growth forecast within their jurisdictions. We are also creating a web-based application to assist those jurisdictions that do not have GIS software. The forthcoming package and online version will include a detailed user's guide, as well as useful datasets.

To date, SCAG has conducted workshops and trainings to introduce the software to stakeholders. Our goal in distributing this software tool is to enhance our technical

collaboration with jurisdictions, and allow for deeper engagement during the SCS development process.

Please note that this is just the beginning of the collaborative process that we anticipate having with your jurisdiction. SCAG intends to hold dozens of meetings, workshops and hearings on the RTP and SCS leading up to adoption in April 2012 (see schedule above). Most notably for our local jurisdictions, we will conduct a minimum of three workshops per county, at which time the Local Sustainability Planning Tool will be available for use creating a visual representation of SCS.

Contact Information

Please contact the following SCAG staff for questions.

SCS schedule and outreach:

Pria Hidisyan, hidisyan@scag.ca.gov, (213) 236-1953

Regional Housing Needs Assessment:

Ma'Ayn Johnson, johnson@scag.ca.gov, (213) 236-1975

Growth Forecast:

Javier Minjares, minjares@scag.ca.gov, (213) 236-1893

Local Sustainability Planning Tool:

JungA Uhm, uhm@scag.cag.gov, (213) 236-1939

375 Website www.scag.ca.gov/sb375/

In developing a variety of forums for collaboration, SCAG looks forward to assisting cities and counties in whatever way is most useful. We look forward to working with you as we embark on this process of creating a Sustainable Communities Strategy that reflects the excellent planning efforts of our region.

Sincerely,

Annhal S

Huasha Liu Director, Land Use and Environmental Planning

Cc: Cathy Van Horn

Mr. Jacob Alvarez, Subregional Coordinator, CVAG